Арены способны вступать в реакции. Арены (ароматические углеводороды)

Ароматические углеводороды – соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение – бензол – было открыто в 1825 г. М. Фарадеем. Была установлена его молекулярная формула – С 6 Н 6. Если сравнить его состав с составом предельного углеводорода, содержащего такое же количество атомов углерода, — гексаном (С 6 Н 14), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приводит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена – 1, 3, 5.


Таким образом, молекула, соответствующая формуле Кекуле , содержит двойные связи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения: гидрирования, бромирования, гидратации и т. д.

Однако данные многочисленных экспериментов показали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температурах и освещении), устойчив к окислению. Наиболее характерными для него являются реакции замещения, следовательно, бензол по характеру ближе к придельным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензол. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод — углеродные связи в бензоле равноценны, и их свойства не похожи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или формулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола? На основании данных исследователей и расчетов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sp 2 -гибридизации и лежат в одной плоскости. Негибридизированные p -орбитали атомов углерода, составляющие двойные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя единую π-систему. Таким образом, система чередующихся двойных связей, изображенных в формуле Кекуле, является циклической системой сопряженных, перекрывающихся между собой -связей. Эта система представляет собой две тороидальные (похожие на бублик) области электронной плотности, лежащие по обе стороны бензольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре (π -система) более логично, чем в виде циклогексатриена-1,3,5.

Американский ученый Л. Полинг предложил представлять бензол в виде двух граничных структур, отличающихся распределением электронной плотности и постоянно переходящих друг в друга, т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерения длин связей подтверждают эти предположения. Выяснено, что все С-С связи в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С-С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы которых содержат несколько циклических структур.

Изомерия и номенклатура

Для гомологов бензола характерна изомерия положения нескольких заместителей . Простейший гомолог бензола - толуол (метилбензол) — не имеет таких изомеров; следующий гомолог представлен в виде четырех изомеров:


Основой названия ароматического углеводорода с небольшими заместителями является слово бензол . Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему:


По старой номенклатуре положения 2 и 6 называют ортоположениями , 4 - пара- , а 3 и 5 - метаположениями.

Физические свойства
Бензол и его простейшие гомологи в обычных условиях весьма токсичные жидкости с характерным неприятным запахом. Они плохо растворяются в воде, но хорошо - в органических растворителях.

Химические свойства бензола

Реакции замещения . Ароматические углеводороды вступают в реакции замещения.
1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (ΙΙΙ), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрирование бензола и его гомологов . При взаимодействии ароматического углеводорода с азотной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитрогруппу -NO 2:

Восстановлением образовавшегося в этой реакции нитробензола получают анилин — вещество, которое применяется для получения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.
Реакции присоединения. Ароматические соединения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются циклогексан или его производные.
1. Гидрирование . Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнорадикальной:

Гомологи бензола

Состав их молекул отвечает формуле С n H 2 n-6 . Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы С 8 Н 10:

По старой номенклатуре, употребляемой для указания относительного расположения двух одинаковых или разных заместителей в бензольном кольце, используют приставки орто — (сокращенно о-) – заместители расположены у соседних атомов углерода, мета- (м -) – через один атом углерода и пара — (п -) – заместители друг против друга.
Первые члены гомологического ряда бензола – жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями.

Гомологи бензола вступают в реакции замещения (бромирование, нитрирование). Толуол окисляется перманганатом при нагревании:

Гомологи бензола используются как растворители, для получения красителей, средств для защиты растений, пластмасс, лекарств.



















Ароматические углеводороды, называемые еще аренами, представлены органическими веществами. В составе их молекул присутствуют одно или несколько бензольных ядер (колец). Бензол, также называемый бензеном, - первый представитель гомологического ряда аренов. Химические свойства, строение молекулы и типы химических связей в его молекуле имеют ряд особенностей. Мы рассмотрим их в нашей статье, а также познакомимся с другими соединениями, входящими в группу ароматических углеводородов.

Как установили структурную формулу аренов

В 1865 году немецкий ученый Ф. Кекуле предложил пространственную модель простейшего арена - бензола. Она имела вид плоского шестиугольника, в вершинах которого находились атомы углерода, которые соединялись между собой тремя простыми и двойными связями, чередующимися друг с другом. Однако выявленные экспериментальным путем химические свойства аренов не соответствовали предложенной Ф. Кекуле формуле. Например, бензол не обесцвечивал раствор перманганата калия и бромную воду, что указывало на отсутствие в молекулах аренов пи-связей. Каково же строение бензола на самом деле? Ни одинарных, ни двойных связей у ароматических углеводородов нет. Опытным путем установлено, что эти соединения содержат между атомами углерода равноценный тип химической связи, получившей название полуторной, или ароматической. Именно поэтому они не вступают в реакцию окисления с растворами KMnO4 и Br2. Выведена общая формула аренов - CnH2n-6. Все специфические свойства ароматических соединений можно объяснить их электронным строением, которое мы изучим далее.

Электронная формула

На примере бензола установим, как связаны между собой атомы карбона. Выяснилось, что все шесть углеродных атомов находятся в виде sp2-гибридизации. Карбон соединен с атомом водорода и двумя соседними углеродными атомами тремя сигма-связями. Вот благодаря чему формируется плоская шестиугольная форма молекулы. Однако у каждого карбонового атома остается еще по одной отрицательно заряженной частице, не задействованной в гибридизации. Ее электронное облако имеет вид гантели и располагается над и под плоскостью шестиугольника, называемого бензольным кольцом. Далее все шесть гантелей перекрываются и образуют общую ароматическую (полуторную) связь. Именно она и обусловливает все физические и химические характеристики веществ. Таково электронное строение аренов.

Что такое бензол?

Лучше понять особенности ароматических углеводородов поможет знакомство с первым представителем этого класса - бензеном. Легко подвижная, горючая бесцветная жидкость со своеобразным запахом, не растворимая в воде, - это бензол. Как само соединение, так и его пары токсичны. Согласно общей формуле аренов количественный и качественный состав молекулы вещества можно выразить в таком виде: C6H6. Как и для других ароматических углеводородов - толуола, антрацена или нафталина, для бензола типичными будут реакции горения и замещения атомов водорода бензольного ядра. Особенностью жесткого окисления всех ароматических соединений является сильно коптящее пламя. Смесь паров бензола с воздухом взрывоопасна, поэтому все опыты с веществом в лаборатории проводятся только в вытяжном шкафу. Бензол, как и другие ароматические вещества, не присоединяет ни воду, ни галогеноводороды. Он также не обесцвечивает раствор перманганата калия и бромную воду. Гомологи бензола, например толуол или кумол, могут окисляться, в этом случае реакции подвергается не само бензольное кольцо, а только радикал.

Химические свойства аренов

К каким же реакциям способны соединения, содержащие в своем составе бензольные кольца и полуторную связь между атомами углерода? Это, прежде всего, реакции замещения, проходящие у них намного легче, чем у алканов. Представим запись каталитической реакции между бензолом и бромом с участием бромида трехвалентного железа, приводящей к образованию бромбензола - нерастворимой в воде бесцветной жидкости:

C6H6+ Br2→ C6H5Br +HBr

Если в процессе применять хлористый алюминий как катализатор, можно добиться полного замещения в молекуле бензола всех водородных атомов. В этом случае образуется гексахлорбензол, бесцветные кристаллы которого применяют в методах защиты семян культурных растений и в процессах обработки древесины для продления сроков ее хранения. Для более полной характеристики аренов добавим некоторые факты. Чтобы ароматические соединения могли присоединять другие вещества, например хлор, нужны специальные условия. В нашем случае это будет ультрафиолетовое облучение реагирующей смеси. Продуктом реакции будет гексахлорциклогексан, или, как его еще называют, гексахлоран. Это известное в сельском хозяйстве средство - инсектицид, применяемый для борьбы с насекомыми-вредителями.

Как и для чего получают нитробензол?

Продолжим обзор химических свойств аренов. Применяя в одной реакции концентрированные азотную и сульфатную кислоты (нитрующую смесь), можно из бензола получить важный для органического синтеза продукт - нитробензол. Это жидкость бледно-желтого цвета, маслянистая на вид, имеет миндальный запах. Она нерастворима в воде, но часто используется как растворитель для многих органических веществ: лаков, жиров и т.д. Нитробензол является многотоннажным продуктом, так как используется в качестве сырья для получения анилина. Это вещество настолько значимо для химической промышленности, что стоит остановиться на нем более подробно. Известным российским химиком Н.Н. Зининым в 1842 году из нитробензола реакцией восстановления сульфидом аммония был получен анилин. В современных условиях получил распространение контактный метод, при котором смесь паров водорода и нитробензола пропускают при температуре 300 °C над катализатором. Полученный ароматический амин в дальнейшем используют для производства взрывчатых веществ, красителей, лекарственных препаратов.

Из чего добывают ароматические углеводороды?

Наиболее перспективным является получение аренов из продукта коксования каменного угля и в процессе нефтепереработки. Циклопарафины, содержащиеся в каменноугольной смоле, подвергают гидрогенизации над катализатором при температуре до 300 °C, продуктом реакции будет бензол. Дегидрирование алканов также приводит к образованию ароматических углеводородов. Реакцией Зелинского-Казанского бензол получают из этина, пропуская его через трубку с активированным углем, разогретую до 600 °C. Получение аренов, например толуола, осуществляют с помощью реакции Фриделя - Крафтса. Можно также добывать метилбензол (толуол), используя гептан. Полученные виды аренов применяют как растворители и добавки к моторному топливу, в производстве анилиновых красителей и ядохимикатов.

Нафталин

В 50-70-х годах прошлого века одним из излюбленных средств защиты меховых и шерстяных изделий от моли в быту являлся нафталин. При его длительном применении одежда приобретала характерный, очень стойкий запах. Однако более важным является применение нафталина в качестве сырья для синтеза лекарственных средств, красителей, взрывчатых веществ. Основные способы его получения основаны на переработке продуктов нефтеперегонки и отходов этиленового производства - пиролизной смолы. Вещество, в отличие от бензола, содержит два бензольных ядра, поэтому реакции нитрования и галогенирования проходят у него быстрее. Продолжая приводить примеры аренов, остановимся на еще одном, важном для промышленности ароматическом углеводороде - винилбензоле.

Стирол

Современная индустрия строительных материалов невозможна без полимерных материалов: легких в обработке, прочных и износоустойчивых. Полимеры, полученные из винилбензола, например, такие, как пенопласт (вспененный полистирол), пластики САН и АБС, используются в производстве натяжных потолков, напольных покрытий, утеплителей стен. Стирол получают из этилбензола в виде бесцветной, горючей жидкости со своеобразным запахом. В дальнейшем ее подвергают полимеризации и добывают твердую стекловидную массу - полистирол. Он и служит исходным продуктом в производстве вышеназванных строительных материалов. Винилбензол применяют в качестве растворителя, используют наряду с бутадиеном в реакции полимеризации, приводящей к синтезу бутадиен-стирольных каучуков.

Номенклатура ароматических соединений

Название аренов по международной классификации ИЮПАК включает в себя обозначение заместителя, к которому добавляют слово "бензол". Например, C6H5CH3 - метилбензол, C6H5C2H3 - винилбензол. У этих соединений есть и тривиальные названия, так, первое соединение именуют толуолом, второе - стиролом. Арены могут содержать два заместителя, например два метильных радикала. Они способны присоединяться к карбоновому циклу в трех позициях: при 1 и 2 углеродных атомах, тогда говорят об ортоположении заместителей. Если радикалы располагаются при 1 и 3 карбоновых частицах, то речь идет о метаположении заместителей, при 1 и 4 атомах углерода - это паразамещение. Высшие гомологи бензола можно представить как производные насыщенных углеводородов, в молекулах которых один атом водорода замещен фенильным радикалом C6H5-. Например, соединение с формулой C6H5C6H13 будет иметь название "фенилгексан".

В нашей статье мы изучили химические свойства аренов, а также дали характеристику их свойствам и применению в промышленности.

Способы получения. 1. Получение из алифатических углеводородов. Для получения бензола и его гомологов в промышленности используют ароматизацию предельных углеводородов, входящих в состав нефти. При пропускании алканов с неразветвленной цепью, состоящей не менее чем из шести атомов углерода, над нагретой платиной или оксидом хрома происходит дегидрирование с одновременным замыканием цикла (дегидроциклизация ). При этом из гексана получают бензол, а из гептана - толуол.

2. Дегидрирование циклоалканов также приводит к ароматическим углеводородам; для этого пары циклогексана и его гомологов пропускают над нагретой платиной.

3. Бензол можно получить при тримеризации ацетилена, для чего ацетилен пропускают над активированным углем при 600 °С.

4. Гомологи бензола получают из бензола при его взаимодействии с алкилгалогенидами в присутствии галогенидов алюминия (реакция алкилирования, или реакция Фриделя-Крафтса).

5. При сплавлении солей ароматических кислот со щелочью выделяются арены в газообразном виде.

Химические свойства. Ароматическое ядро, обладающее подвижной системой л-электронов, - удобный объект для атаки электрофильными реагентами. Этому способствует также пространственное расположение л-электронного облака с двух сторон плоского a-скелета молекулы (см. рис. 23.1, б).

Для аренов наиболее характерны реакции, протекающие по механизму электрофильного замещения, обозначаемого символом S E (от англ, substitution, electrophilic).

Механизм S E можно представить следующим образом:

На первой стадии электрофильная частица X притягивается к л-электронному облаку и образует с ним л-комплекс. Затем два из шести л-электронов кольца образуют a-связь между X и одним из атомов углерода. При этом ароматичность системы нарушается, так как в кольце остается только четыре л-электрона, распределенные между пятью атомами углерода (a-комплекс). Для сохранения ароматичности a-комплекс выбрасывает протон, а два электрона связи С-Н переходят в л-электронную систему.

По механизму электрофильного замещения протекают следующие реакции ароматических углеводородов.

1. Галогенирование. Бензол и его гомологи взаимодействуют с хлором или бромом в присутствии катализаторов - безводных А1С1 3 , FeCl 3 , А1Вг 3 .

По этой реакции из толуола получают смесь орто- и пара-изоме- ров (см. ниже). Роль катализатора заключается в поляризации нейтральной молекулы галогена с образованием из нее электрофильной частицы.

2. Нитрование. Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии нитрующей смеси (смеси концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко.

3. Сульфирование . Реакция легко проходит с «дымящей» серной кислотой (олеумом).

  • 4. Алкилирование по Фриделю-Крафтсу - см. выше способы получения гомологов бензола.
  • 5. Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора А1С1 3 . Механизм реакции сходен с механизмом предыдущей реакции.

Все рассмотренные выше реакции протекают по механизму электрофильного замещения S E .

Наряду с реакциями замещения ароматические углеводороды могут вступать в реакции присоединения, однако эти реакции приводят к разрушению ароматической системы и поэтому требуют больших затрат энергии и протекают только в жестких условиях.

6. Гидрирование бензола идет при нагревании и высоком давлении в присутствии металлических катализаторов (Ni, Pt, Pd). Бензол превращается в циклогексан.

Гомологи бензола при гидрировании дают производные циклогексана.

7. Радикальное галогенирование бензола происходит при взаимодействии его паров с хлором только под воздействием жесткого ультрафиолетового излучения. При этом бензол присоединяет три молекулы хлора и образует твердый продукт гексахлорциклогек- сан (гексахлоран) С 6 Н 6 С1 6 (атомы водорода в структурных формулах не указаны).

8. Окисление кислородом воздуха. По устойчивости к действию окислителей бензол напоминает алканы - реакция требует жестких условий. Например, окисление бензола кислородом воздуха происходит только при сильном нагревании (400 °С) его паров на воздухе в присутствии катализатора V 2 0 5 ; продукты - смесь малеиновой кислоты и ее ангидрида.


Гомологи бензола. Химические свойства гомологов бензола отличны от свойств бензола, что обусловлено взаимным влиянием алкильного радикала и бензольного кольца.

Реакции в боковой цепи. По химическим свойствам алкильные заместители в бензольном кольце подобны алканам. Атомы водорода в них замещаются на галоген по радикальному механизму (S R). Поэтому в отсутствие катализатора при нагревании или УФ облучении идет радикальная реакция замещения в боковой цепи. Однако влияние бензольного кольца на алкильные заместители приводит к тому, что в первую очередь замещается водород у атома углерода, непосредственно связанного с бензольным кольцом (а-атома углерода).

Замещение в бензольном кольце по механизму S E возможно только в присутствии катализатора (А1С1 3 или FeCl 3). Замещение в кольце происходит в орто- и пара-положения к алкильному радикалу.

При действии перманганата калия и других сильных окислителей на гомологи бензола боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением а-атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту.


Физические свойства

Бензол и его ближайшие гомологи – бесцветные жидкости со специфическим запахом. Ароматические углеводороды легче воды и в ней не растворяются, однако легко растворяются в органических растворителях – спирте, эфире, ацетоне.

Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода вих молекулах.

Физические свойства некоторых аренов представлены в таблице.

Таблица. Физические свойства некоторых аренов

Название

Формула

t°.пл.,
°C

t°.кип.,
°C

Бензол

C 6 H 6

5,5

80,1

Толуол (метилбензол)

С 6 Н 5 СH 3

95,0

110,6

Этилбензол

С 6 Н 5 С 2 H 5

95,0

136,2

Ксилол (диметилбензол)

С 6 Н 4 (СH 3) 2

орто-

25,18

144,41

мета-

47,87

139,10

пара-

13,26

138,35

Пропилбензол

С 6 Н 5 (CH 2) 2 CH 3

99,0

159,20

Кумол (изопропилбензол)

C 6 H 5 CH(CH 3) 2

96,0

152,39

Стирол (винилбензол)

С 6 Н 5 CH=СН 2

30,6

145,2

Бензол – легкокипящая ( t кип = 80,1°С), бесцветная жидкость, не растворяется в воде

Внимание! Бензол – яд, действует на почки, изменяет формулу крови (при длительном воздействии), может нарушать структуру хромосом.

Большинство ароматических углеводородов опасны для жизни, токсичны.

Получение аренов (бензола и его гомологов)

В лаборатории

1. Сплавление солей бензойной кислоты с твёрдыми щелочами

C 6 H 5 -COONa + NaOH t → C 6 H 6 + Na 2 CO 3

бензоат натрия

2. Реакция Вюрца-Фиттинга : (здесь Г – галоген)

С 6 H 5 -Г + 2 Na + R -Г → C 6 H 5 - R + 2 Na Г

С 6 H 5 -Cl + 2Na + CH 3 -Cl → C 6 H 5 -CH 3 + 2NaCl

В промышленности

  • выделяют из нефти и угля методом фракционной перегонки, риформингом;
  • из каменноугольной смолы и коксового газа

1. Дегидроциклизацией алканов с числом атомов углерода больше 6:

C 6 H 14 t , kat →C 6 H 6 + 4H 2

2. Тримеризация ацетилена (только для бензола) – р. Зелинского :

3С 2 H 2 600° C , акт. уголь →C 6 H 6

3. Дегидрированием циклогексана и его гомологов:

Советский академик Николай Дмитриевич Зелинский установил, что бензол образуется из циклогексана (дегидрирование циклоалканов

C 6 H 12 t, kat →C 6 H 6 + 3H 2

C 6 H 11 -CH 3 t , kat →C 6 H 5 -CH 3 + 3H 2

метилциклогексантолуол

4. Алкилирование бензола (получение гомологов бензола) – р Фриделя-Крафтса .

C 6 H 6 + C 2 H 5 -Cl t, AlCl3 →C 6 H 5 -C 2 H 5 + HCl

хлорэтан этилбензол


Химические свойства аренов

I . РЕАКЦИИ ОКИСЛЕНИЯ

1. Горение (коптящее пламя):

2C 6 H 6 + 15O 2 t →12CO 2 + 6H 2 O + Q

2. Бензол при обычных условиях не обесцвечивает бромную воду и водный раствор марганцовки

3. Гомологи бензола окисляются перманганатом калия (обесцвечивают марганцовку):

А) в кислой среде до бензойной кислоты

При действии на гомологи бензола перманганата калия и других сильных окислителей боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением a -атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту:


Гомологи, содержащие две боковые цепи, дают двухосновные кислоты:

5C 6 H 5 -C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 6K 2 SO 4 + 12MnSO 4 +28H 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 COOH + 3K 2 SO 4 + 6MnSO 4 +14H 2 O

Упрощённо:

C 6 H 5 -CH 3 + 3O KMnO4 →C 6 H 5 COOH + H 2 O

Б) в нейтральной и слабощелочной до солей бензойной кислоты

C 6 H 5 -CH 3 + 2KMnO 4 → C 6 H 5 COO К + K ОН + 2MnO 2 + H 2 O

II . РЕАКЦИИ ПРИСОЕДИНЕНИЯ (труднее, чем у алкенов)

1. Галогенирование

C 6 H 6 +3Cl 2 h ν → C 6 H 6 Cl 6 (гексахлорциклогексан - гексахлоран)

2. Гидрирование

C 6 H 6 + 3H 2 t , Pt или Ni →C 6 H 12 (циклогексан)

3. Полимеризация

III . РЕАКЦИИ ЗАМЕЩЕНИЯ – ионный механизм(легче, чем у алканов)

б) гомологов бензола при облучении или нагревании

По химическим свойствам алкильные радикалы подобны алканам. Атомы водорода в них замещаются на галоген по свободно-радикальному механизму. Поэтому в отсутствие катализатора при нагревании или УФ-облучении идет радикальная реакция замещения в боковой цепи. Влияние бензольного кольца на алкильные заместители приводит к тому, что замещается всегда атом водорода у атома углерода, непосредственно связанного с бензольным кольцом (a -атома углерода).

1) C 6 H 5 -CH 3 + Cl 2 h ν → C 6 H 5 -CH 2 -Cl + HCl

в) гомологов бензола в присутствии катализатора

C 6 H 5 -CH 3 + Cl 2 AlCl 3 → (смесь орта, пара производных) +HCl

2. Нитрование (с азотной кислотой)

C 6 H 6 + HO-NO 2 t, H2SO4 →C 6 H 5 -NO 2 + H 2 O

нитробензол - запах миндаля !

C 6 H 5 -CH 3 + 3HO-NO 2 t, H2SO4 С H 3 -C 6 H 2 (NO 2) 3 + 3H 2 O

2,4,6-тринитротолуол (тол, тротил)

Применение бензола и его гомологов

Бензол C 6 H 6 – хороший растворитель. Бензол в качестве добавки улучшает качество моторного топлива. Служит сырьем для получения многих ароматических органических соединений – нитробензола C 6 H 5 NO 2 (растворитель, из него получают анилин), хлорбензола C 6 H 5 Cl, фенола C 6 H 5 OH, стирола и т.д.

Толуол C 6 H 5 –CH 3 – растворитель, используется при производстве красителей, лекарственных и взрывчатых веществ (тротил (тол), или 2,4,6-тринитротолуол ТНТ).

Ксилолы C 6 H 4 (CH 3) 2 . Технический ксилол – смесь трех изомеров (орто -, мета - и пара -ксилолов) – применяется в качестве растворителя и исходного продукта для синтеза многих органических соединений.

Изопропилбензол C 6 H 5 –CH(CH 3) 2 служит для получения фенола и ацетона.

Хлорпроизводные бензола используют для защиты растений. Так, продукт замещения в бензоле атомов Н атомами хлора – гексахлорбензол С 6 Сl 6 – фунгицид; его применяют для сухого протравливания семян пшеницы и ржи против твердой головни. Продукт присоединения хлора к бензолу – гексахлорциклогексан (гексахлоран) С 6 Н 6 Сl 6 – инсектицид; его используют для борьбы с вредными насекомыми. Упомянутые вещества относятся к пестицидам – химическим средствам борьбы с микроорганизмами, растениями и животными.

Стирол C 6 H 5 – CH = CH 2 очень легко полимеризуется, образуя полистирол, а сополимеризуясь с бутадиеном – бутадиенстирольные каучуки.

ВИДЕО-ОПЫТЫ

Ароматические химические соединения, или арены, представляют собой большую группу карбоциклических соединений, в молекулах которых содержится устойчивый цикл из шести углеродных атомов. Она носит название «бензольное кольцо» и обуславливает особые физические и химические свойства аренов.

К ароматическим углеводородам относится в первую очередь бензол и всевозможные его гомологи и производные.

В молекулах аренов может содержаться несколько бензольных колец. Такие соединения называют многоядерными ароматическими соединениями. Например, нафталин - всем известный препарат для защиты шерстяных изделий от моли.

Бензол

Этот простейший представитель аренов состоит только из бензольного кольца. Его молекулярная формула С6Η6. Структурную формулу молекулы бензола чаще всего представляют циклической формой, предложенной А. Кекуле в 1865 году.

Достоинством этой формулы является верное отражение состава и равноценности всех атомов С и Н в кольце. Однако она не могла объяснить многих химических свойств аренов, поэтому утверждение о наличии трех сопряженных двойных связей С=С является ошибочным. Это стало известно лишь с появлением современной теории связей.

Между тем и сегодня часто встречается написание формулы бензола способом, предложенным Кекуле. Во-первых, с ее помощью удобно записывать уравнения химических реакций. Во-вторых, современные химики видят в ней лишь символ, а не реальную структуру. Строение молекулы бензола сегодня передают различными типами структурных формул.

Строение бензольного кольца

Главной особенностью бензольного ядра можно назвать отсутствие в нем одинарных и двойных связей в традиционном понимании. В соответствии с современными представлениями молекула бензола представляется плоским шестиугольником с длинами сторон равными 0,140 нм. Получается, что длина связи С-С в бензоле является промежуточным значением между одинарной (ее длина 0,154 нм) и двойной (0,134 нм). В той же плоскости лежат и связи С–Н, образующие с ребрами шестиугольника угол в 120°.

Каждый атом С в структуре бензола находится в sp2-гибридном состоянии. Он соединен посредством трех своих гибридных орбиталей с двумя атомами С, расположенными по соседству, и одним атомом Н. То есть образует три s-связи. Еще одна, но уже негибридизованная его 2р-орбиталь, перекрывается с такими же орбиталями соседних атомов С (справа и слева). Ось ее перпендикулярна плоскости кольца, а значит перекрывание орбиталей происходит над и под ней. При этом образуется общая замкнутая π-электронная система. Из-за равнозначного перекрывания 2р-орбиталей шести атомов С происходит своего рода «уравнивание» связей С-С и С=С.

Результатом этого процесса является сходство таких «полуторных» связей и с двойными, и с одинарными. Этим объясняется тот факт, что проявляют арены химические свойства, характерные и для алканов, и для алкенов.

Энергия углерод-углеродной связи в бензольном кольце равняется 490 кДж/моль. Что также является также средней величиной между энергиями простой и кратной двойной связи.


Номенклатура аренов

Основой названий ароматических углеводородов является бензол. Атомы в кольце нумеруют со старшего заместителя. Если же заместители равнозначны, то нумерацию осуществляют по кратчайшему пути.

Для многих гомологов бензола часто используют тривиальные названия: стирол, толуол, ксилол и т. д. Для отражения взаимного расположения заместителей принято использовать приставки οртο-, мета-, пара-.

Если в молекуле имеются функциональные группы, например, карбонильная или карбоксильная, то молекулу арена рассматривают как соединенный с ней ароматический радикал. Например, -С6Η5 – фенил, -C6Η4 – фенилен, С6Η5-СΗ2- – бензил.

Физические свойства

Первые представители в гомологическом ряду бензола – это бесцветные жидкости, имеющие специфичес­кий запах. Их вес легче воды, в которой они практически не растворяются, но хорошо растворяются в большинстве органических растворителей.

Все ароматические углеводороды горят с появлением коптящего пламени, что объясняется высоким содержанием С в молекулах. Температуры плавления и кипения их повышаются с увеличением значений молекулярных масс в гомологическом ряду бензола.

Химические свойства бензола

Из разнообразных химических свойств аренов реакции замещения следует упомянуть отдельно. Также весьма значимы некоторые реакции присоединения, осуществляющиеся в особых условиях, и процессы окисления.

Реакции замещения

Довольно подвижные π-электроны бензольного кольца, способны очень активно реагировать с атакующими электрофилами. В таком электрофильном замещении участвует само бензольное ядро в бензоле и связанная с ним углеводородная цепь в его гомологах. Механизм этого процесса довольно подробно изучен органической химией. Химические свойства аренов, связанные с атакой электрофилов, проявляются посредством трех стадий.

  • Первая стадия. Появление π-комплекса из-за связывания π-электронной системы бензольного ядра с частицей Х+, которая связывается с шестью π-электронами.
  • Вторая стадия. Переход π-комплекса в s, обусловленный выделением из шести π-электронов пары для образования ковалентной связи С-X. А остальные четыре перераспределяются между пятью атомами С в бензольном кольце.
  • Третья стадия. Сопровождается быстрым отщеплением протона от s-комплекса.

Бромирование бензола в присутствии бромидов железа или алюминия без нагревания приводит к получению бромбензола:

C6Η6+ Br2 -> C6Η5-Br + ΗBr.

Нитрование смесью азотной и серной кислот приводит к получению соединений с нитрогруппой в кольце:

C6Η6+ ΗONO2 -> C6Η5-NO2+ Η2O.

Сульфирование осуществляется бисульфониевым ионом, образующимся в результате реакции:

3Η2SO4 ⇄ SO3Η++ Η3O++ 2ΗSO4-,

или триоксид серы.

Соответствует данному химическому свойству аренов реакция:

C6H6+ SO3H+ -> C6H5-SO3H + H+.

Реакции алкильного и ацильного замещения, или реакции Фриделя–Крафтса, проводят в присутствии безводного AlCl3.


Эти реакции маловероятны для бензола и протекают с трудом. Присоединение галогеноводородов и воды к бензолу не происходит. Однако при очень высоких температурах в присутствии платины возможна реакция гидрирования:

С6Η6 + 3Н2 -> С6Н12.

При облучении ультрафиолетом к молекуле бензола могут присоединиться молекулы хлора:

С6Η6 + 3Cl2 -> C6Η6Cl6.

Реакции окисления

Бензол весьма устойчив к окислителям. Так, он не обесцвечивает розовый раствор перманганата калия. Однако в присутствии оксида ванадия он может окисляться кислородом воздуха до малеиновой кислоты:

С6Н6 + 4О -> СООΗ-СΗ=СΗ-СООΗ.

На воздухе бензол горит с появлением копоти:

2C6Η6 + 3O2 → 12C + 6Η2O.

Химические свойства аренов

  1. Замещение.
  • Галогенирование может идти разными путями в зависимости от условия проведения реакции. В присутствии соответствующего галогенида железа или алюминия замещение будет идти в кольце по механизму, подробно описанному выше. Чтобы атом галогена ввести в боковую цепь, взаимодействие проводят при нагревании без катализаторов или на свету.
  • Нитрование ароматических углеводородов ионом нитрония, который образуется при смешивании серной и азотной кислоты, приводит к соединению нитрогруппы с бензольным ядром. Соединение нитрогруппы с боковой цепью возможно при проведении реакции Коновалова. 2. Окисление. Данное химическое свойство аренов можно рассматривать с двух точек зрения. С одной, они довольно легко окисляются, причем действию подвергается боковая цепь с образованием карбоксильной группы. Если в молекуле ароматического углеводорода с кольцом соединены два заместителя, то образуется двухосновная кислота. С другой стороны, они, как и бензол, горят с образованием сажи и воды.

Правила ориентации

Какое именно положение (о-, м- или п-) займет заместитель в ходе взаимодействия электрофильного агента с бензольным кольцом определяется правилами:

  • если в бензольном ядре уже имеется какой-либо заместитель, то именно он направляет входящую группу в определенное положение;
  • все ориентирующие заместители делят на две группы: ориентанты первого рода направляют поступающую группу атомов в орто- и пара-положения (-NΗ2, -ОΗ,-СΗ3, -С2Н5, галогены); ориентанты второго рода направляют вступающие заместители в мета-положение (-NO2, -SO3Η, -СΗО, -СООΗ).

Ориентанты здесь указаны в порядке уменьшения направляющей силы.

Стоит отметить, что такое разделение заместителей группы является условным, из-за того, в большинстве реакций наблюдается образование всех трех изомеров. Ориентанты же влияют лишь на то, какой из изомеров будет получен в большем количестве.

Получение аренов

Основными источниками аренов являются сухая перегонка каменного угля и нефтепереработка. В каменноугольной смоле содержится огромное количество всевозможных ароматических углеводородов. В некоторых сортах нефти содержится до 60% аренов, которые несложно выделить простой перегонкой, пиролизом или крекингом.

Способы синтетического получения и химические свойства аренов зачастую бывают взаимосвязаны. Бензол, как и его гомологи, получают одним из следующих способов.

1. Риформинг нефтепродуктов. Дегидрирование алканов – важнейший промышленный способ синтеза бензола и многих его гомологов. Реакцию ведут при пропускании газов над нагретым катализатором (Pt, Cr2O3, оксиды Mo и V) при t = 350–450 оС:

С6Н14 -> С6Η6 + 4Η2.

2. Реакция Вюрца–Фиттига. Она осуществляется через стадию получения металлорганических соединений. В итоге реакции возможно получение нескольких продуктов.

3. Тримеризация ацетилена. Сам ацетилен, как и его гомологи способны образовывать арены при нагревании с катализатором:

3С2Η2 -> С6Η6.

4. Реакция Фриделя–Крафтса. Выше уже был рассмотрен в химических свойствах аренов способ получения и превращения гомологов бензола.

5. Получение из соответствующих солей. Бензол можно выделить при перегонке солей бензойной кислоты со щелочью:

C6Η5-COONa + NaOΗ -> C6Η6 + Na2CO3.

6. Восстановлением кетонов:

C6Η5–CO–CΗ3 + Zn + 2ΗCl -> C6Η5–CΗ2–CΗ3 + Η2O + ZnCl2;

CΗ3–C6Η5–CO–CΗ3+ NΗ2–NΗ2 -> CΗ3–C6Η5–CΗ2–CΗ3+ Η2O.

Применение аренов

Химические свойства и области применения аренов имеют прямую взаимосвязь, поскольку основная часть ароматических соединений идет для дальнейшего синтеза в химическом производстве, а не используется в готовом виде. Исключение составляют вещества, применяемые в качестве растворителей.

Бензол С6Η6 применяется по большей части в синтезе этилбензола, кумола и циклогексана. На его основе получают полупродукты для изготовления различных полимеров: каучуков, пластмасс, волокон, красителей, ПАВ, инсектицидов, лекарств.


Толуол С6Н5-СН3 используют при производстве красителей, лекарств и взрывчатых веществ.

Ксилолы С6Η4(СΗ3)2 в смешанном виде (технический ксилол) применяются в качестве растворителя или исходного препарата для синтеза органических веществ.

Изопропилбензол (или кумол) С6Η4-СΗ(СΗ3)2 является исходным реагентом для синтеза фенола и ацетона.

Винилбензол (стирол) C6Η5-CΗ=СΗ2 является сырьем для получения важнейшего полимерного материала – полистирола.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «woodmaster-shop.ru» — Водонагреватели. Отопление. Счетчики воды. Бойлеры. Ванны. Унитаз. Раковины