Начертить линии индукции магнитных полей. Индукция магнитного поля

Мы не можем увидеть магнитное поле, однако для лучшего понимания магнитных явлений важно научиться его изображать. В этом помогут магнитные стрелки. Каждая такая стрелка — это маленький постоянный магнит, который легко поворачивается в горизонтальной плоскости (рис. 2.1). О том, как графически изображают магнитное поле и какая физическая величина его характеризует, вы узнаете из этого параграфа.

Рис. 2.2. В магнитном поле магнитные стрелки ориентируются определенным образом: северный полюс стрелки указывает направление вектора индукции магнитного поля в данной точке

Изучаем силовую характеристику магнитного поля

Если заряженная частица движется в магнитном поле, то поле будет действовать на частицу с некоторой силой. Значение этой силы зависит от заряда частицы, направления и значения скорости ее движения, а также от того, насколько сильным является поле.

Силовой характеристикой магнитного поля является магнитная индукция.

Магнитная индукция (индукция магнитного поля) — это векторная физическая величина, характеризующая силовое действие магнитного поля.

Магнитную индукцию обозначают символом B.

Единица магнитной индукции в СИ — тесла; названа в честь сербского физика Николы Теслы (1856-1943):

За направление вектора магнитной индукции в данной точке магнитного поля принято направление, на которое указывает северный полюс магнитной стрелки, установленной в этой точке (рис. 2.2).

Обратите внимание! Направление силы, с которой магнитное поле действует на движущиеся заряженные частицы или на проводник с током, или на магнитную стрелку, не совпадает с направлением вектора магнитной индукции.

Магнитные линии:

Рис. 2.3. Линии магнитного поля полосового магнита

Вне магнита выходят из северного полюса магнита и входят в южный;

Всегда замкнуты (магнитное поле — это вихревое поле);

Наиболее густо расположены у полюсов магнита;

Никогда не пересекаются

Изображаем магнитное поле

На рис. 2.2 видим, как ориентируются магнитные стрелки в магнитном поле: их оси как будто образуют линии, а вектор магнитной индукции в каждой точке направлен вдоль касательной к линии, проходящей через эту точку.

С помощью магнитных линий графически изображают магнитные поля:

1) за направление линии магнитной индукции в данной точке принято направление вектора магнитной индукции;

Рис. 2.4. Цепочки железных опилок воспроизводят картину линий магнитной индукции магнитного поля подковообразного магнита

2) чем больше модуль магнитной индукции, тем ближе друг к другу чертят магнитные линии.

Рассмотрев графическое изображение магнитного поля полосового магнита, можно сделать некоторые выводы (см. на рис. 2.3).

Заметим, что данные выводы справедливы для магнитных линий любого магнита.

Какое направление имеют магнитные линии внутри полосового магнита?


Картину магнитных линий можно воспроизвести с помощью железных опилок.

Возьмем подковообразный магнит, положим на него пластинку из оргстекла и через ситечко будем насыпать на пластинку железные опилки. В магнитном поле каждый кусочек железа намагнитится и превратится в маленькую «магнитную стрелку». Импровизированные «стрелки» сориентируются вдоль магнитных линий магнитного поля магнита (рис. 2.4).

Изобразите картину магнитных линий магнитного поля подковообразного магнита.

Узнаём об однородном магнитном поле

Магнитное поле в некоторой части пространства называют однородным, если в каждой его точке векторы магнитной индукции одинаковы как по модулю, так и по направлению (рис. 2.5).

На участках, где магнитное поле однородно, линии магнитной индукции параллельны и расположены на одинаковом расстоянии друг от друга (рис. 2.5, 2.6). Магнитные линии однородного магнитного поля, направленные к нам, принято изображать точками (рис. 2.7, а) — мы как будто видим «острия стрел», летящих к нам. Если магнитные линии направлены от нас, то их изображают крестиками — мы как будто видим «оперения стрел», летящих от нас (рис. 2.7, б).

В большинстве случаев мы имеем дело с неоднородным магнитным полем, — полем, в разных точках которого векторы магнитной индукции имеют разные значения и направления. Магнитные линии такого поля искривлены, а их плотность разная.

Рис. 2.6. Магнитное поле внутри полосового магнита (а) и между двумя магнитами, обращенными друг к другу разноименными полюсами (б), можно считать однородным

Изучаем магнитное поле Земли

Для изучения земного магнетизма Вильям Гильберт изготовил постоянный магнит в виде шара (модель Земли). Расположив на шаре компас, он заметил, что стрелка компаса ведет себя так же, как на поверхности Земли.

Эксперименты позволили ученому предположить, что Земля — это огромный магнит, а на севере нашей планеты расположен ее южный магнитный полюс. Дальнейшие исследования подтвердили гипотезу В. Гильберта.

На рис. 2.8 изображена картина линий магнитной индукции магнитного поля Земли.

рис. 2.7. Изображение линий магнитной индукции однородного магнитного поля, которые перпендикулярны плоскости рисунка и направлены к нам (а); направлены от нас (б)

Представьте, что вы идете к Северному полюсу, двигаясь точно в том направлении, на которое указывает стрелка компаса. Достигнете ли вы места назначения?

Линии магнитной индукции магнитного поля Земли не параллельны ее поверхности. Если закрепить магнитную стрелку в карданном подвесе, то есть так, чтобы она могла свободно вращаться как вокруг горизонтальной, так

Рис. 2.8. Схема расположения магнитных линий магнитного поля планеты Земля

и вокруг вертикальной осей, стрелка установится под углом к поверхности Земли (рис. 2.9).

Как будет расположена магнитная стрелка в устройстве на рис. 2.9 вблизи северного магнитного полюса Земли? вблизи южного магнитного полюса Земли?

Магнитное поле Земли издавна помогало ориентироваться путешественникам, морякам, военным и не только им. Доказано, что рыбы, морские млекопитающие и птицы во время своих миграций ориентируются по магнитному полю Земли. Так же ориентируются, ища путь домой, и некоторые животные, например кошки.

Узнаём о магнитных бурях

Исследования показали, что в любой местности магнитное поле Земли периодически, каждые сутки, изменяется. Кроме того, наблюдаются небольшие ежегодные изменения магнитного поля Земли. Случаются, однако, и резкие его изменения. Сильные возмущения магнитного поля Земли, которые охватывают всю планету и продолжаются от одного до нескольких дней, называют магнитными бурями. Здоровые люди их практически не ощущают, а вот у тех, кто имеет сердечно-сосудистые заболевания и заболевания нервной системы, магнитные бури вызывают ухудшение самочувствия.

Магнитное поле Земли — своеобразный «щит», который защищает нашу планету от летящих из космоса, в основном от Солнца («солнечный ветер»), заряженных частиц. Вблизи магнитных полюсов потоки частиц подлетают довольно близко к атмосфере Земли. При возрастании солнечной активности космические частицы попадают в верхние слои атмосферы и ионизируют молекулы газа — на Земле наблюдаются полярные сияния (рис. 2.10).

Подводим итоги

Магнитная индукция В — это векторная физическая величина, характеризующая силовое действие магнитного поля. Направление вектора магнитной индукции совпадает с направлением, на которое указывает северный полюс магнитной стрелки. Единица магнитной индукции в СИ — тесла (Тл).

Условные направленные линии, в каждой точке которых касательная совпадает с линией, вдоль которой направлен вектор магнитной индукции, называют линиями магнитной индукции или магнитными линиями.

Линии магнитной индукции всегда замкнуты, вне магнита они выходят из северного полюса магнита и входят в южный, гуще расположены в тех областях магнитного поля, где модуль магнитной индукции больше.

Планета Земля имеет магнитное поле. Вблизи северного географического полюса Земли расположен ее южный магнитный полюс, вблизи южного географического полюса — северный магнитный полюс.

Контрольные вопросы

1. Дайте определение магнитной индукции. 2. Как направлен вектор магнитной индукции? 3. Какова единица магнитной индукции в СИ? В честь кого она названа? 4. Приведите определение линий магнитной индукции. 5. Какое направление принято за направление магнитных линий? 6. От чего зависит густота магнитных линий? 7. Какое магнитное поле называют однородным? 8. Докажите, что Земля имеет магнитное поле. 9. Как расположены магнитные полюсы Земли относительно географических? 10. Что такое магнитные бури? Как они влияют на человека?


Упражнение № 2

1. На рис. 1 изображены линии магнитной индукции на некотором участке магнитного поля. Для каждого случая а-в определите: 1) какое это поле — однородное или неоднородное; 2) направление вектора магнитной индукции в точках А и В поля; 3) в какой точке — А или В — магнитная индукция поля больше.

2. Почему стальная оконная решетка может со временем намагнититься?

3. На рис. 2 изображены линии магнитного поля, созданного двумя одинаковыми постоянными магнитами, обращенными друг к другу одноименными полюсами.

1) Существует ли магнитное поле в точке А?

2) Каково направление вектора магнитной индукции в точке В? в точке С?

3) В какой точке — А, В или С — магнитная индукция поля наибольшая?

4) Каково направление векторов магнитной индукции внутри магнитов?

4. Раньше во время экспедиций на Северный полюс возникали трудности в определении направления движения, ведь вблизи полюса обычные компасы почти не работали. Как вы думаете, почему?

5. Воспользуйтесь дополнительными источниками информации и выясните, какое значение имеет магнитное поле для жизни на нашей планете. Что произошло бы, если бы магнитное поле Земли вдруг исчезло?

6. Существуют участки земной поверхности, где магнитная индукция магнитного поля Земли значительно больше, чем в соседних областях. Воспользуйтесь дополнительными источниками информации и узнайте о магнитных аномалиях подробнее.

7. Объясните, почему любое незаряженное тело всегда притягивается к телу, имеющему электрический заряд.

Это материал учебника

«Физика - 11 класс»

Электрическое поле характеризуется напряженностью электрического поля.
Напряженность электрического поля - это величина векторная. Магнитное поле характеризуется магнитной индукцией.
Магнитная индукция - это векторная величина, она обозначается буквой .


Направление вектора магнитной индукции

За направление вектора магнитной индукци принимается направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.

Используя рамку с током или магнитную стрелку, можно определить направление вектора магнитной индукции в любой точке поля.
В магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке устанавливается по касательной к окружности, плоскость которой перпендикулярна проводу, а центр ее лежит на оси провода.


Правило буравчика

Направление вектора магнитной индукции устанавливают с помощью правила буравчика.

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции

Линии магнитной индукции

Магнитное поле можно показать с помощью линий магнитной индукции.
Линиями магнитной индукции называют линии, касательные к которым в любой их точке совпадают с вектором в данной точке поля. Линии вектора магнитной индукции аналогичны линиям вектора напряженности электростатического поля.

Линии магнитной индукции можно сделать видимыми, воспользовавшись железными опилками.


Магнитное поле прямолинейного проводника с током

Для пряого проводника с током линии магнитной индукции являются концентрическими окружностями, лежащими в плоскости, перпендикулярной этому проводнику с током. Центр окружностей находится на оси проводника. Стрелки на линиях указывают, в какую сторону направлен вектор магнитной индукции, касательный к данной линии.

Магнитное поле катушки с током (соленоида)

Если длина соленоида много больше его диаметра, то магнитное поле внутри соленоида можно считать однородным .
Линии магнитной индукции такого поля параллельны и находятся на равных расстояниях друг от друга.

Магнитное поле Земли

Линии магнитной индукции поля Земли подобны линиям магнитной индукции поля соленоида.
Магнитная ось Земли составляет с осью вращения Земли угол 11,5°.
Периодически магнитные полюсы меняют свою полярность.


Вихревое поле

Силовые линии электростатического поля всегда имеют источники: они начинаются на положительных зарядах и оканчиваются на отрицательных.
А линии магнитной индукции не имеют ни начала, ни конца, они всегда замкнуты.
Поля с замкнутыми векторными линиями называют вихревыми .
Магнитное поле - вихревое поле.
Магнитное поле не имеет источников.
Магнитных зарядов, подобных электрическим, в природе не существует.

Итак , магнитное поле - это вихревое поле, в каждой его точке вектор магнитной индукции указывает магнитная стрелка, направление вектора магнитной индукции можно определить по правилу буравчика

Вам понадобится

  • - эталонный магнит;
  • - источник тока;
  • - правый буравчик;
  • - прямой проводник;
  • - катушка, виток провода, соленоид.

Инструкция

Определите направление вектора магнитной индукции . Для этого найдите его и полюс. Обычно магнита имеет синий цвет, а южный ¬– . Если полюса магнита неизвестны, возьмите эталонный магнит и поднесите его северным полюсом к неизвестному. Тот конец, который притянется к северному полюсу эталонного магнита, будет южным полюсом магнита, индукция поля которого измеряется. Линии магнитной индукции выходят из северного полюса и входят в южный полюс. Вектор в каждой точке линии идет в направлении линии по касательной.

Определите направление вектора магнитной индукции прямого проводника с током. Ток идет от положительного полюса источника к отрицательному. Возьмите буравчик, который вкручивается при вращении по часовой стрелке, он называется правый. Начните вкручивать его в том направлении, куда идет ток у проводнике. Вращение рукояти покажет направление замкнутых круговых линий магнитной индукции. Вектор магнитной индукции в этом случае будет проходить по касательной к окружности.

Найдите направление магнитного поля витка с током, катушки или соленоида. Для этого подключите проводник к источнику тока. Возьмите правый буравчик и вращайте его рукоятку в направлении тока, идущего по виткам от положительного полюса источника тока к отрицательному. Поступательное движение штока буравчика покажет направление силовых линий магнитного поля. Например, если рукоятка буравчика вращается по направлению тока против часовой стрелки (влево), то он, выкручиваясь, поступательно движется в сторону наблюдателя. Поэтому силовые линии магнитного поля направлены тоже в сторону наблюдателя. Внутри витка, катушки или соленоида линии магнитного поля прямые, по направлению и абсолютной величине совпадают с вектором магнитной индукции.

Полезный совет

В качестве правого буравчика можно использовать обычный штопор для открывания бутылок.

Для определения индукции магнитного поля возьмите специальный прибор, который называется тесламетр, внеся его в поле, снимите показания. Чтобы найти магнитное поле соленоида, измерьте его длину и количество витков, а также силу тока, пропускаемого через него, после чего рассчитайте индукцию. Также можно измерить эту величину эталонным магнитом.

Вам понадобится

  • Для измерений возьмите тесламетр, соленоид, амперметр, магнитную стрелку, динамометр.

Инструкция

Измерение индукции с помощью проводника Соберите цепь, состоящую из прямого проводника, подвешенного на гибких проводниках, и последовательно подключенного к нему амперметра. Измерьте его длину и поместите проводник между полюсами , подключите цепь к источнику тока. На проводник начнет действовать магнитная сила, которую уравновесьте динамометром, сняв с него показания в ньютонах. Снимите показания силы тока в амперах с помощью амперметра. Последовательно поделите значение магнитной силы на силу тока и длину проводника в метрах (B=F/(I l)), в результате получите значение индукции поля в теслах.

Измерение индукции поля соленоида Возьмите катушку из изолированного провода, достаточно длинную для того, чтобы силовые линии поля внутри нее были прямыми. Измерьте ее длину и посчитайте количество витков провода. Подключите соленоид к источнику тока, включив в цепь последовательно амперметр. С помощью амперметра узнайте силу тока, проходящего через соленоид в амперах. После этого значение силы тока умножьте на количество витков соленоида и поделите на его длину в метрах (I n/l). Результат умножьте на число 1,26*10^-6, получите значение магнитной индукции поля соленоида в теслах.

Измерение индукции поля эталонным магнитом Для эталонного магнита возьмите длинную и тонкую магнитную стрелку и подвесьте ее на нить крутильного динамометра. Внесите систему в магнитное поле, и вращайте динамометр до тех пор, пока стрелка не сдвинется с места. Снимите показания с динамометра. Затем поднесите стрелку к торцу соленоида и, регулируя силу тока, добейтесь, чтобы при выходе из положения равновесия при вращении, на динамометре были те же показания. Рассчитайте индукцию поля соленоида, она будет равна индукции измеряемого поля.

Видео по теме

Для определения вектора магнитной индукции найдите его абсолютную величину и направление. Это можно сделать при помощи эталонной магнитной стрелки и соленоида. В соленоиде рассчитайте значение магнитной индукции, а ее направление найдите с помощью магнитной стрелки. По правилу буравчика находится направление поля прямого тока и витка с током.

Вам понадобится

  • тонкая магнитная стрелка, соленоид, амперметр, правый буравчик.

Инструкция

Вектор магнитной индукции прямого проводника с токомСоберите цепь из амперметра и прямого проводника, подключите ее к источнику тока. Определите точку пространства, где будет измеряться индукция магнитного поля, и измерьте от нее до проводника. Для этого опустите на него перпендикуляр и измерьте его длину в метрах. Подключите источник тока и измерьте силу тока в цепи с помощью амперметра в амперах. Значение магнитной индукции найдите, поделив силу тока на расстояние от выбранной точки до проводника и число 6,28, а результат помножьте на магнитную постоянную 1,26 10^(-6), B=I 1,26 10^(-6)/(R 6,28). Затем возьмите правый

Для наглядности картины изменения вектора магнитной индукции при переходе от одной точки пространства к другой вводится понятие линий вектора магнитной индукции (силовых линий магнитного поля). Непрерывная линия, касательная к которой в любой ее точке задает направление вектора магнитной индукции , называется силовой линией магнитного поля . Густота силовых линий прямопропорциональна модулю вектора магнитной индукции.

На рисунке 7 показаны исследования магнитного поля вокруг полюсового магнита с помощью магнитных стрелок и картина силовых линий магнитного поля вокруг такого магнита.

Магнитные стрелки можно заменить железными опилками, которые намагничиваются в поле данного магнита и становятся маленькими стрелками. (На картон, который кладут на магнит, насыпают опилки. При легком потряхивании картона опилки хорошо ориентируются.)

Поле, в каждой точке которого вектор магнитной индукции постоянен по величине и направлению, называют однородным . На рисунке 8 приведены способы изображения силовых линий однородного магнитного поля, направленного вправо (а ), влево (б ), в плоскость листа от нас (в ) и из него к нам (г ).

Источником магнитного поля являются не только постоянные магниты, но и проводники с током. Картина силовых линий магнитного поля, созданного постоянным подковообразным магнитом (а ), прямым проводом с током (б ) и проволочным кольцом (в ), по которому течет ток, показана на рисунке 9. Силовые линии магнитного поля – замкнутые линии. Во внешнем пространстве постоянных магнитов они идут от северного полюса к южному. Направление силовых линий вокруг прямолинейного провода с током определяется по правилу буравчика (правовращающий винт, штопор): если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Что такое магнитное поле, какими основными свойствами оно обладает? Каково применение его в научных исследованиях, в быту и на производстве? Об этом будет рассказано в этой статье с применением скорее интуитивного подхода, основанного на общих примерах реального мира.

Графическое изображение силовых линий

Электрическое поле графически изображается при помощи силовых линий (линий напряженности), которые дают наглядное представление о распределении напряженности в пространстве. Они берут начало с положительного заряда, то есть с источника энергии. Отрицательный заряд является приемником силовых линий (поглотителем энергии). Чем больше мощность заряда, тем больше количество силовых линий исходит из него.

Для информации. Все что касается электрического поля на самом деле довольно трудно себе представить. Принято эти поля изображать мнимыми кривыми, которые обладают следующими свойствами: соответствующее поле имеет направление, касательное к кривой в каждой точке. Плотность этих кривых говорит о том, насколько сильным является поле в данной точке.

Магнитное поле обозначают соответствующими линиями. Их направление обращено в сторону направления стрелки компаса (с южного полюса к северному), если бы такую же стрелку разместили в эту область пространства. Плотность этих линий указывает на силу поля.

Важно! Индуцированная электродвижущая сила не является однородной, имеет тенденцию настраивать токи между точками, где наибольший и наименьший потенциал. Так как индукция магнитного поля является векторной величиной, то требуется найти его ориентированность.

Магнитное поле ведет себя иначе, чем электрическое: у него никогда не может быть источников и поглотителей. Линии магнитной индукции имеют направление, как всякая векторная величина, но они никогда не начинаются и не заканчиваются. Линии магнитного поля представляют собой замкнутые петли.

Для информации. Во Вселенной магнитных зарядов нет. Говоря о монополях в теоретической физике, подразумевают заряды, которые никто никогда не наблюдал. Магнитные поля – это области, где объект проявляет свое влияние, привлекая или отталкивая соседний объект. Линии магнитной индукции – это средство, с помощью которого поля воздействуют на соседние объекты. Магнитные силы основаны на материалах, из которых сделаны объекты. Они не имеют отношения к гравитации, поскольку величина силы тяжести основана на массе объекта.

Источники магнитного поля

Итак, магнитное поле не создается зарядами. Что же тогда является его источником? Оно создается электрическими токами. Если ток можно представить вектором с некоторым направлением, то линии магнитной индукции представляют собой петли, вращающиеся вокруг этого тока.

При изменении электрического поля во времени создаются линии магнитной индукции вокруг направления изменения. Благодаря этому эффекту электромагнитное поле может распространяться даже в пустом пространстве без токов и зарядов.

Электромагнитное поле проводника

Любое вещество состоит из атомов, включающих в себя движущиеся заряды. Это значит, что каждому атому присуще своё магнитное поле. Но, как правило, эти поля разнонаправленны, и общего магнитного поля не создаётся. В то время как у материала (железо, никель, кобальт) магнитные поля атомов могут выстраиваться таким образом, что почти все они будут одинаково направлены. Создается одно единое мощное магнитное поле, и материал намагничивается.

Важно! Намагничивание – это упорядочивание магнитных полей атомов. Нарушить это можно постукиванием или нагреванием материала. Атомы начинают двигаться хаотично, и материал теряет магнитные свойства.

Электромагнитная индукция

При всяком изменении магнитного потока в цепи индуцируется ЭДС. Если цепь замкнута, в ней также возникает ток. ЭДС и ток, создаваемый таким образом, сохраняются до тех пор, пока продолжается изменение потока, связанного с контуром. Это явление называют электромагнитной индукцией.

Экспериментальные наблюдения в исследуемой области позволили ученым вывести два знаменитых закона физики:

  1. Закон Фарадея. Величина индуцированной э.д.с. пропорциональна скорости изменения магнитного потока, связанного с контуром;
  2. Закон Ленца. Направление индуцированной э.д.с. таково, что оно выступает против изменения магнитного потока, который его производит.

Закон Фарадея является основным компонентом электротехники. Генераторы, трансформаторы, станции по выработке и производству электроэнергии – все это основано на этом законе: переменное магнитное поле индуцирует электрическое поле.

Простой способ показать соотношение электрических и магнитных сил называется правилом правой руки. Простое правило правой руки говорит о том, что:

  • линии индукции, полученные посредством токопроводящего провода, будут ориентированы в том же направлении, что и свернутые пальцы левой руки человека;
  • по противопоставленному положению большого пальца определяется направление тока.

Общая сумма магнитного потока Ф равна плотности потока B, умноженной на площадь A, через которую он протекает.

Важно! Магнитное поле должно увеличивать или уменьшать интенсивность, перпендикулярную к проводу (так, чтобы линии потока «пересекали» проводник), иначе напряжение не будет индуцировано. Способом создания магнитного поля, изменяемого с интенсивностью, является перемещение магнита рядом с проволокой или катушкой провода.

В векторном пространстве каждая точка может быть отождествлена с двумя векторами: электрическим полем E или магнитной индукцией B. Они имеют определённые значения в каждой точке пространства, которые могут быть любыми, даже нулевыми. С помощью векторных линий отображается электромагнитное поле, так его легче и удобнее представить.

Видео

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «woodmaster-shop.ru» — Водонагреватели. Отопление. Счетчики воды. Бойлеры. Ванны. Унитаз. Раковины