Какая единица используется для измерения электрического напряжения. Основные величины и меры электрического тока

Вольтметр – это измерительный прибор, который предназначен для измерения напряжения постоянного или переменного тока в электрических цепях.

Вольтметр подключается параллельно к выводам источника напряжения с помощью выносных щупов. По способу отображения результатов измерений вольтметры бывают стрелочные и цифровые.

Величина напряжения измеряется в Вольтах , обозначается на приборах буквой В (в русском языке) или латинской буквой V (международное обозначение).

На электрических схемах вольтметр обозначается латинской буквой V, обведенной окружностью, как показано на фотографии.

Напряжение тока бывает постоянное и переменное. Если напряжение источника тока переменное, то перед значением ставится знак "~ ", если постоянного, то знак "".

Например, переменное напряжение бытовой сети 220 Вольт кратко обозначается так: ~220 В или ~220 V . На батарейках и аккумуляторах при их маркировке знак "" часто опускается, просто нанесено число. Напряжение боротой сети автомобиля или аккумулятора обозначается так: 12 В или 12 V , а батарейки для фонарика или фотоаппарата: 1,5 В или 1,5 V . На корпусе в обязательном порядке наносится маркировка возле положительного вывода в виде знака "+ ".

Полярность переменного напряжения изменяется во времени. Например, напряжение в бытовой электропроводке изменяет полярность 50 раз в секунду (частота изменения измеряется в Герцах, один Герц равен одному изменению полярности напряжения в одну секунду).

Полярность постоянного напряжения во времени не меняется. Поэтому для измерения напряжения переменного и постоянного тока требуются разные измерительные приборы.

Существуют универсальные вольтметры, с помощью которых можно измерять как переменное, так и постоянное напряжение без переключения режимов работы, например, вольтметр типа Э533.

Как измерять напряжение в электропроводке бытовой сети

Внимание! При измерении напряжения величиной выше 36 В недопустимо прикосновение человека к оголенным провода, так как можно получить удар током.

Согласно требованиям ГОСТ 13109-97 действующее значение напряжения в электрической сети должно быть 220 В ±10% , то есть может изменяться в пределах от 198 В до 242 В . Если в квартире стали тускло гореть лампочки или часто перегорать, стала не стабильно работать бытовая техника, то для принятия мер, требуется сначала измерять значение напряжения в электропроводке.

Приступая к измерениям, необходимо подготовить прибор: – проверить надежность изоляции проводников с наконечниками и щупов; – установить переключатель пределов измерений в положение измерения переменного напряжения не менее 250 В;

– вставить разъемы проводников в гнезда прибора ориентируясь по надписям возле них;


– включить измерительный прибор (если необходимо).

Как видно на картинке, в тестере выбран предел изменения переменного напряжения 300 В, а в мультиметре 700 В. Во многих моделях тестеров, нужно установить в требуемое положение сразу несколько переключателей. Род тока (~ или –), вид измерений (В, А или Омы) и еще вставить концы щупов в нужные гнезда.

В мультиметре конец щупа черного цвета вставлен в гнездо COM (общее для всех измерений), а красного в V, общий для изменения постоянного и переменного напряжения, тока, сопротивления и частоты. Гнездо, обозначенное ma , используются для измерения малых токов, 10 А при измерении тока достигающего 10 А.

Внимание! Измерение напряжения, когда штекер вставлен в гнездо 10 А выведет прибор из строя. В лучшем случае перегорит вставленный внутри прибора предохранитель, в худшем придется покупать новый мультиметр. Особенно часто допускают ошибки при использовании приборов для измерения сопротивления, и, забыв переключить режим, измеряют напряжение. Встречал не один десяток таких неисправных приборов, с горелыми резисторами внутри.

После проведения всех подготовительных работ можно приступать к измерению. Если Вы включили мультиметр, а на индикаторе не появились цифры, значит, либо в прибор не установлена батарейка или она уже выработала свой ресурс. Обычно в мультиметрах применяется батарейка типа «Крона», напряжением 9 В, срок годности которой один год. По этому, даже если прибор не использовался долгое время, батарейка может быть неработоспособна. При эксплуатации мультиметра в стационарных условиях целесообразно вместо кроны использовать адаптер ~220 В/–9 В.

Вставляете концы щупов в розетку или прикасаетесь ними к проводам электропроводки.


Мультиметр сразу покажет напряжение в сети, а вот в стрелочном тестере показания надо еще уметь прочитать. На первый взгляд, кажется, что сложно, так как много шкал. Но если присмотреться, то становится ясно, по какой шкале считывать показания прибора. На рассматриваемом приборе типа ТЛ-4 (который безотказно мне служит более 40 лет!) есть 5 шкал.

Верхняя шкала используется для снятия показаний, когда переключатель стоит в положениях кратных 1 (0,1, 1, 10, 100, 1000). Шкала, расположенная чуть ниже, кратных 3 (0,3, 3, 30, 300). При измерениях напряжения переменного тока величиной 1 В и 3 В, нанесены еще 2 дополнительные шкалы. Для измерения сопротивления имеется отдельная шкала. Аналогичную градуировку имеют все тестеры, но кратность может быть любая.

Так как предел измерений был выставлен ~300 В, значит, отсчет нужно производить по второй шкале с пределом 3, умножив показания на 100. Цена маленького деления равна 0,1, следовательно, получается 2,3 + стрелка стоит посередине между штрихами, значит, берем значение показаний 2,35×100=235 В.

Получилось, что измеренное значение напряжения составляет 235 В, что в пределах допустимого. Если в процессе измерений наблюдается постоянное изменение значения цифр младшего разряда, а у тестера стрелка постоянно колеблется, значит, имеются плохие контакты в соединениях электропроводки и необходимо провести ее ревизию.

Как измерять напряжение батарейки
аккумулятора или блока питания

Так как напряжение источников постоянного тока обычно не превышает 24 В, то прикосновение к клеммам и оголенным проводам не опасно для человека и особых мер безопасности соблюдать не требуется.

Для того, чтобы оценить годность батарейки, аккумулятора или исправность блока питания требуется измерять напряжение на их выводах. Выводы у круглых батареек находятся по торцам цилиндрического корпуса, положительный вывод обозначен знаком «+».

Измерение напряжения постоянного тока практически мало чем отличается от измерения переменного. Нужно просто переключить прибор в соответствующий режим измерения и соблюдать полярность подключения.

Величина напряжения, которое создает батарейка обычно нанесена на ее корпусе. Но даже если результат измерений показал достаточное напряжение, это еще не говорит о том, что батарейка хорошая, так как измерена ЭДС (электро движущая сила), а не емкость батарейки, от которой зависит продолжительность работы изделия, в которое она будет установлена.

Для более точной оценки емкости батарейки нужно напряжение измерять, подсоединив к ее полюсам нагрузку. В качестве нагрузки для батарейки 1,5 В хорошо подходит лампочка накаливания для фонарика, рассчитанная на напряжение 1,5 В. Для удобства работы нужно припаять к ее цоколю проводники.

Если напряжение под нагрузкой снижается менее, чем на 15%, то батарейка или аккумулятор вполне пригодны для эксплуатации. Если нет измерительного прибора, то можно судить о годности к дальнейшей эксплуатации батарейки по яркости свечения лампочки. Но такая проверка не может гарантировать продолжительность работы батарейки в устройстве. Она лишь свидетельствует, что в настоящее время батарейка еще пригодна к эксплуатации.

Для измерения напряжения служат вольтметры, милливольтметры, микровольтметры различных систем. Эти приборы включаются параллельно нагрузке, поэтому сопротивление их должно быть как можно больше (примерно на два порядка больше сопротивления любого элемента цепи).

Рисунок 6 Рисунок 7

Для расширения пределов измерения вольтметра (в k раз) в цепях постоянного тока напряжением до 500В обычно применяют добавочные сопротивления R d , включаемые в цепь последовательно с вольтметром.

Из соотношения
определим
,

Где U max - наибольшее значение напряжения, которое может быть измерено вольтметром с добавочным сопротивлением;

U вн - предельное (номинальное) значение шкалы вольтметра при отсутствии R д.

Величина фактически измеряемого напряжения U определяется из соотношения:

;
,

где U в - показание вольтметра.

В цепях переменного тока для изменения пределов измерения вольтметра применяют трансформаторы напряжения.

Измерение мощности. Измерение мощности в цепях постоянного и однофазного токов

Мощность в цепях постоянного тока, потребляемая данным участком электрической цепи, равна:

и может быть измерена амперметром и вольтметром.

Помимо неудобства одновременного отсчёта показаний двух приборов, измерение мощности этим способом производится с неизбежной погрешностью. Удобнее измерять мощность в цепях постоянного тока ваттметром.

Измерить активную мощность в цепи переменного тока амперметром и вольтметром нельзя, т.к. мощность такой цепи зависит и от соsφ:

Поэтому в цепях переменного тока активная мощность измеряется только ваттметром.

Рисунок 8

Неподвижная обмотка 1-1 (токовая) включается последовательно, а подвижная 2-2 (обмотка напряжения) параллельно с нагрузкой.

Для правильного включения ваттметра один из зажимов токовой обмотки и один из зажимов обмотки напряжения отмечают звёздочкой (*). Эти зажимы, называемые генераторными, необходимо включать со стороны источника питания, объединив их вместе. В этом случае ваттметр будет показывать мощность, идущую со стороны сети (генератора) к приёмнику электрической энергии.

Измерение активной мощности в цепях трёхфазного тока

При измерении мощности трёхфазного тока применяют различные схемы включения ваттметров в зависимости от:

    системы проводки (трёх- или четырёхпроводная);

    нагрузки (равномерная или неравномерная);

    схемы соединения нагрузки (звезда или треугольник).

а) измерение мощности при симметричной нагрузки; система проводки трех- или четырехпроводная:

Рисунок 9 Рисунок10

В этом случае мощность всей цепи можно измерить одним ваттметром (рисунки 9,10), который покажет мощность одной фазы Р=3P ф =3U ф I ф соsφ

б) при несимметричной нагрузке мощность трёхфазного потребителя можно измерить тремя ваттметрами:

Рисунок 11

Общая мощность потребителя равна:

в) измерение мощности методом двух ваттметров:

Рисунок 12

Применяется в 3-х проводных системах трехфазного тока при симметричной и несимметричной нагрузках и любом способе соединения потребителей. При этом токовые обмотки ваттметров включаются в фазы А и В (например), а параллельные на линейные напряжения U АС и U ВС (или А и С  U АВ и U СА), (рис. 12).

Общая мощность P=P 1 +P 2 .

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой «U» . Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х10 18 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока.
  • Постоянное напряжение . Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение . Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
    — амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
    — мгновенное напряжение , которое выражается в определенный момент времени;
    — действующее напряжение , определяется по выполняемой активной работе 1-го полупериода;
    — средневыпрямленное напряжение , определяемое по модулю величины выпрямленного напряжения за один гармонический период.

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением , а напряжение между землей и каждой из фаз – фазным напряжением . Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I ». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться . На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:
  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I . Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:
  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • , вследствие движения носителей заряда.
Условия возникновения электрического тока:
  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.
Формы сигнала тока
  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.

Виды работы электрического тока
  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током
  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Всем привет, на связи с вами снова Владимир Васильев. Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех, только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?». Может быть это прошаренный спец зашел из любопытства почитать что я тут накалякал? А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора? 🙂

Знаете все это маловероятно, потому как для прошаренного специалиста все это уже пройденный этап и скорее всего все уже не так интересно и они сами с усами. Им может быть интересно лишь из праздного любопытства, мне конечно очень приятно и я жду каждого с распростертыми объятьями.

Так что я пришел к выводу, что основной контингент моего блога да и большинства радиолюбительских сайтов это новички и любители рыскающие по интернету в поисках полезной информации. Так какого лешего, у меня ее так мало? Будет в скором временя поболее так что не пропустите!

Я вспоминаю себя, когда я искал в интернете какую-нибудь простенькую схемку чтобы с чего-нибудь начать, но постоянно что-то не подходило, что-то казалось заумным. Мне не хватало азов, таких, чтобы можно было по принципу от простого к сложному начать разбираться в интересующей меня теме.

Кстати первая книга которая мне действительно помогла, от прочтения которой действительно начало приходить понимание — это была книга «Искусство схемотехники» П. Хоровица, У. Хилла. Я писал про нее в , там и книжку можно скачать. Так вот, если вы новичок то обязательно ее скачайте и пусть она станет вашей настольной книгой.

Что такое напряжение и ток?

Кстати действительно что же такое электрический ток и напряжение? Я думаю, что никто на самом деле и не знает, ведь чтобы это знать это надо хотябы видеть. Кто может видеть ток, бегущий по проводам?

Да никто, человечество еще не достигло таких технологий, чтобы воочию наблюдать движения электрических зарядов. Все что мы видим в учебниках и научных трудах это некая абстракция созданная в результате многочисленных наблюдений.

Ну ладно об этом можно много рассуждать… Так давайте попробуем разобраться, что такое электрический ток и напряжение. Я не буду писать определения, определения не дают самого понимания сути. Если интересно, возьмите любой учебник по физике.

Так как мы его не видим электрического тока и всех процессов протекающих в проводнике, тогда попробуем создать аналогию.

И традиционно электрический ток текущий в проводнике сравнивают с водой бегущей по трубам. В нашей аналогии вода это электрический ток. Вода бежит по трубам с определенной скоростью, скорость это сила тока, измеряемая в амперах. Ну трубы это само собой проводник.

Хорошо, электрический ток мы себе представили, но а что такое напряжение? Сейчас помозгуем.

Вода в трубе, в отсутствии каких-либо сил (сила тяжести, давления) теч не будет, она будет покоиться как и любая другая жижа вылитая на пол. Так вот эта сила или точнее сказать энергия в нашей водопроводной аналогии и будет тем самым напряжением.

Но что происходит с водой бегущей из резервуара расположенного высоко над землей? Вода устремляется бурным потоком из резервуара к поверхности земли, гонимая силами тяготения. И чем выше от земли расположен резервуар тем с большей скоростью вытекает вода из шланга. Понимаете о чем я говорю?

Чем выше резервуар, тем больше сила (читай напряжение) воздействующая на воду. И тем больше скорость водного потока (читай сила тока). Теперь становится понятно и в голове начинает создаваться красочная картинка.

Понятие потенциала, разности потенциалов

С понятием напряжения электрического тока тесно связано понятие «потенциал» , или «разность потенциалов». Хорошо, обратимся снова к нашей водопроводной аналогии.

Наш резервуар находится на возвышенности что позволяет воде беспрепятственно стекать по трубе вниз. Так как бак с водой на высоте, то и потенциал этой точки будет более высоким или более положительным чем тот что находится на уровне земли. Видите что получается?

У нас появилось две точки имеющие разные потенциалы, точнее разную величину потенциала.

Получается, для того чтобы электрический ток мог бежать по проводу, потенциалы не должны быть равны. Ток бежит от точки с большим потенциалом к точки с меньшим потенциалом.

Помните такое выражение, что ток бежит от плюса к минусу. Так вот это все тоже самое. Плюс это более положительный потенциал а минус более отрицательный.

Кстати а хотите вопрос на засыпку? Что произойдет с током, если величины потенциалов будет периодически меняться местами?

Тогда мы будем наблюдать то как электрический ток меняет свое направление на противоположное каждый раз как потенциалы поменяются. Это получится уже переменный ток. Но его мы пока рассматривать не будем, дабы в голове сформировалось ясное понимание процессов.

Измерение напряжения

Для замера напряжение используется прибор вольтметр, хотя сейчас наиболее популярны мультиметры. Мультиметр это такой комбинированный прибор имеющий в себе много чего. О нем я писал и рассказывал как им пользоваться.

Вольтметр это как раз тот прибор который измеряет разность потенциалов между двумя точками. Напряжение (разность потенциалов) в любой точке схемы обычно измеряется относительно НОЛЯ или ЗЕМЛИ или МАССЫ или МИНУСА батарейки. Не важно главное это должна быть точка имеющая наименьший потенциал во всей схеме.

Итак чтобы измерить напряжение постоянного тока между двумя точками, делаем следующее. Черный (минусовой) щуп вольтметра втыкается в ту точку, где предположительно мы можем наблюдать точку с меньшим потенциалом (НОЛЬ). Красный щуп (плюсовой) втыкаем в точку, потенциал которой нам интересен.

И результатом измерения будет числовое значение разности потенциалов, или другими словами напряжение.

Измерение тока

В отличие от напряжения, которое замеряется в двух точках, величина тока замеряется в одной точке. Так как сила тока (или говорят просто ток) по нашей аналогии есть скорость течения воды, то эту скорость нужно замерять только в одной точке.

Нам нужно распилить водопровод и вставить в разрыв некий счетчик, который будет подсчитывать литры и минуты. Както так.

Аналогично если вернемся в реальный мир нашей электрической модели, то получим тоже самое. Чтобы замерить величину электрического тока, нам нужно подключить в разрыв электрической цепи нехитрый прибор — амперметр. Амперметр также входит в состав мультиметра. Вы также можете почитать в .

Щупы мультиметра нужно переставить в режим измерения тока. Затем перекусываем наш проводник, и подключаем обрывки провода к мультиметру и вуаля — на экране мультиметра будет показана величина тока.

Ну что дорогие друзья, я думаю что мы не теряли время даром. Ознакомившись с нашими водопроводными моделями в голове начал складываться пазл, начало формироваться понимание.

Ну чтож попробуем проверить его на законе Ома.

  • I — ток измеряемый в Амперах (А);
  • U-напряжение измеряемое в Вольтах (В);
  • R-сопротивление измеряемое в Омах (Ом)

Ом нам говорил, что Электрический ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Про сопротивление я сегодня не говорил, но я думаю что вы поняли. Сопротивление электрическому току оказывается материалом проводника. В нашей водопроводной системе сопротивление току воды оказывают ржавые трубы, забитые ржавчиной и прочей какой. 🙂

Таким образом закон Ома работает во всей своей красе что для водопроводной системы, что для электрической. Может быть мне податься в сантехники, уж очень много схожего. 🙂

Чем выше задран резервуар с водой, тем быстрее по трубам будет теч вода. Но если трубы загажены то скорость будет меньше. Чем больше сопротивление воде тем медленнее она будет теч. Если засор, то вода вообще может встать.

Ну и для электричества. Величина тока зависит прямо пропорционально от величины напряжения (разности потенциалов), и обратно пропорционально зависит от сопротивления.

Чем выше напряжение тем больше величина тока, но чем больше сопротивление тем меньше величина тока. Напряжение может быть очень большим, но ток может не теч из-за обрыва. А обрыв это все равно, что если вместо металлического проводника мы подключили проводник из воздуха, а воздух обладает просто гигантским сопротивлением. Вот ток и остановится.

Чтоже дорогие друзья, вот и подходит время закругляться, вроде все что хотел сказать в этой статье я сказал. Если остаются какие-либо вопросы спрашивайте в комментариях. Дальше будет больше, планирую написать череду обучающих материалов, так что не пропустите…

Желаю вам удачи, успехов и до новых встреч!

С н/п Владимир Васильев.

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Конструктор ЗНАТОК 320-Znat «320 схем» — это инструмент, который позволит получить знания в области электроники и электротехники а также достичь понимания процессов происходящих в проводниках.

Конструктор представляет собой набор полноценных радиодеталей имеющих спец. конструктив, позволяющий их монтаж без помощи паяльника. Радиокомпоненты монтируются на специальную плату — основание, что позволяет в конечном итоге получить вполне функциональные радиоконструкции.

Используя этот конструктор можно собрать до 320 различных схем, для построения которых есть развернутое и красочное руководство. А если подключить фантазию в этот творческий процесс то можно получить бесчисленное количество различных радиоконструкций и научиться анализировать их работу. Этот опыт я считаю очень важен и для многих он может оказаться бесценным.

Вот несколько примеров того, что Вы можете сделать благодаря этому конструктору:

Летающий пропеллер;
Лампа,включаемая хлопком в ладоши или струей воздуха;
Управляемые звуки звездных войн, пожарной машины или скорой помощи;
Музыкальный вентилятор;
Электрическое световое ружье;
Изучение азбуки Морзе;
Детектор лжи;
Автоматический уличный фонарь;
Мегафон;
Радиостанция;
Электронный метроном;
Радиоприемники, в том числе FM диапазона;
Устройство, напоминающее о наступлении темноты или рассвета;
Сигнализация о том, что ребенок мокрый;
Защитная сигнализация;
Музыкальный дверной замок;
Лампы при параллельном и последовательном соединении;
Резистор как ограничитель тока;
Заряд и разряд конденсатора;
Тестер электропроводимости;
Усилительный эффект транзистора;
Схема Дарлингтона.

P.S. У нас тут есть своеобразный жлобометр — жадный не заметит соцкнопки, а щедрый делится с друзьями. 🙂

Электрическим током (I) называется направленное движение электрических зарядов (ионов - в электролитах, электронов проводимости в металлах).
Необходимым условием для протекания электрического тока является замкнутость электрической цепи.

Электрический ток измеряется в амперах (А) .

Производными единицами измерения тока являются:
1 килоампер (кА) = 1000 А;
1 миллиампер (мА) 0,001 А;
1 микроампер (мкА) = 0,000001 А.

Человек начинает ощущать проходящий через его тело ток в 0,005 А. Ток больше 0,05 А опасен для жизни человека.

Электрическим напряжением (U) называется разность потенциалов между двумя точками электрического поля.

Единицей разности электрических потенциалов является вольт (В).
1 В = (1 Вт) : (1 А).

Производными единицами измерения напряжения являются:

1 киловольт (кВ) = 1000 В;
1 милливольт (мВ) = 0,001 В;
1 микровольт (мкВ) = 0,00000 1 В.

Сопротивлением участка электрической цепи называется величина, зависящая от материала проводника, его длины и поперечного сечения.

Электрическое сопротивление измеряется в омах (Ом).
1 Ом = (1 В) : (1 А).

Производными единицами измерения сопротивления являются:

1 килоОм (кОм) = 1000 Ом;
1 мегаОм (МОм) = 1 000 000 Ом;
1 миллиОм (мОм) = 0,001 Ом;
1 микроОм (мкОм) = 0,00000 1 Ом.

Электрическое сопротивление тела человека в зависимости от ряда условий колеблется от 2000 до 10 000 Ом.

Удельным электрическим сопротивлением (ρ) называется сопротивление проволоки длиной 1 м и сечением 1 мм2 при температуре 20 °С.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью (γ).

Мощностью (Р) называется величина, характеризующая скорость, с которой происходит преобразование энергии, или скорость, с которой совершается работа.
Мощностью генератора называется величина, характеризующая скорость, с которой механическая или другая энергия преобразуется в генераторе в электрическую.
Мощностью потребителя называется величина, характеризующая скорость, с которой происходит преобразование электрической энергии в отдельных участках цепи в другие полезные виды энергии.

Системной единицей мощности в СИ является ватт (Вт). Он равен мощности, при которой за 1 секунду выполняется работа в 1 джоуль:

1Вт = 1Дж/1сек

Производными единицами измерения электрической мощности являются:

1 киловатт (кВт) = 1000 Вт;
1 мегаватт (МВт) = 1000 кВт = 1 000 000 Вт;
1 милливатт (мВт) = 0,001 Вт; о1i
1 лошадиная сила (л. с.) = 736 Вт = 0,736 кВт.

Единицами измерения электрической энергии являются:

1 ватт-секунда (Вт сек) = 1 Дж = (1 Н) (1 м);
1 киловатт-час (кВт ч) = 3,б 106 Вт сек.

Пример. Ток, потребляемый электродвигателем, присоединенным к сети 220 В, составлял 10 А в течение 15 минут. Определить энергию, потребленную двигателем.
Вт*сек, или, разделив эту величину на 1000 и 3600, получим энергию в киловатт-часах:

W = 1980000/(1000*3600) = 0,55кВт*ч

Таблица 1. Электрические величины и единицы

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «woodmaster-shop.ru» — Водонагреватели. Отопление. Счетчики воды. Бойлеры. Ванны. Унитаз. Раковины