Какая решетка у льда. Кристаллическая решетка льда и воды

Понятие молекулы (и производные от него представления о молекулярном строении вещества, структуры собственно молекулы) позволяет понимать свойства веществ создающих мир. Современные, как и ранние, физико-химические исследования опираются и базируются на грандиозном открытие об атомно-молекулярном строении вещества. Молекула – единая «деталь» всех веществ, существование которой предположил ещё Демокрит. Потому именно её структура и взаимосвязь с другими молекулами (образуя определенное строение и состав) и определяет/объясняет все различия между веществами, их видом и свойствами.

Сама молекула, будучи не самой мельчайшей составной частью вещества (коей является атом) имеет определенную структуру, свойства. Определяется структура молекулы числом вхожих в неё определенных атомов и характером связи (ковалентной) между ними. Состав этот неизменен, даже если вещество преобразуется в другое состояние(как примеру, происходит с водой – об этом пойдет речь дальше).

Молекулярное строение вещества фиксируется формулой, которая сообщает информацию об атомах, их количестве. Кроме того, молекулы составляющие вещество/тело не статичны: и сами являются подвижными – атомы вращаются, взаимодействуя между собой (притягиваются/отталкиваются).

Характеристики воды, её состояния

Состав такого вещества, как вода (равно как и её химическая формула) знаком каждому. Каждую её молекулу составляют три атома: атом кислорода, обозначающийся буквой «О», и атомы водорода – латинская «Н», в количестве 2-х. Форма молекулы воды не симметрична (схожа с равнобедренным треугольником).

Вода, как вещество, составляющие её молекулы, реагирует на внешнюю «обстановку», показатели окружающей среды — температуру, давление. Зависимо от последних вода способна изменять состояние, которых три:

  1. Наиболее привычное, естественное для воды состояние жидкое. Молекулярная структура (дигидроль) своеобразного порядка, при котором одиночные молекулы заполняют (водородными связями) пустоты.
  2. Состояние пара, при котором молекулярная структура (гидроль) представлена одиночными молекулами между которыми не образуются водородные связи.
  3. Твердое состояние (собственно лед), имеет молекулярную структуру (тригидроль) с прочными и устойчивыми водородными связями.

Помимо данных различий, естественно, разнятся и способы «перехода» вещества из одного состояния (жидкого) в другие. Эти переходы и трансформируют вещество, и провоцируют передачу энергии (выделение/поглощение). Среди них есть процессы прямые – преобразование жидкой воды в пар (испарение), в лед (замерзание) и обратные – в жидкость из пара (конденсация), из льда (таяние). Также и состояния воды — парообразное и лед — могут трансформироваться друг в друга: возгонка – лед в пар, сублимация – обратный процесс.

Специфичность льда как состояния воды

Широко известно, что лед замерзает (трансформируется из воды) при пересечении температурой в сторону уменьшения границы в ноль градусов. Хотя, в этом всем понятном явлении, есть свои нюансы. К примеру, состояние льда неоднозначно, различны его виды, модификации. Отличаются они первоочередно условиями, при которых возникают – температурой, давлением. Таких модификаций насчитывается аж пятнадцать.

Лед в разных своих видах имеет различное молекулярное строение (молекулы же неотличимы от молекул воды). Природный и естественный лед, в научной терминологии обозначающийся как лед Ih — вещество с кристаллической структурой. То есть, каждая молекула с четырьмя окружающими её «соседками» (расстояние между всеми равное) создают геометрическую фигуру тетраэдр. Другие фазы льда обладают более сложной структурой, к примеру высокоупорядоченная структура тригонального, кубического или моноклинного льда.

Основные отличия льда от воды на молекулярном уровне

Первое и напрямую не относящееся к молекулярному строению воды и льда различие между ними – показатель плотности вещества. Кристаллическая структура, присущая льду, образовываясь, способствует одновременному уменьшению плотности (с показателя почти в 1000 кг/м³ до 916,7 кг/м³). А это стимулирует увеличение объема на 10%.


Основное же отличие в молекулярном строении этих агрегатных состояний воды (жидкого и твердого) в количестве, виде и силе водородных связей между молекулами . Во льду же (твердом состоянии) ими объединены пять молекул, а собственно связи водородные прочнее.

Сами молекулы веществ воды и льда, как упоминалось ранее, одинаковы. Но в молекулах льда атом кислорода (для создания кристаллической «решетки» вещества) образовывает водородные связи (две) с молекулами-«соседками».

Отличает вещество воды в разных её состояниях (агрегатных) не только структура расположения молекул (молекулярное строение), но и движение их, сила взаимосвязи/притяжения между ними. Молекулы воды в жидком состоянии достаточно слабо притягиваются, обеспечивая текучесть воды. В твердом же льду наиболее сильно притяжение молекул, потому и мала их двигательная активность (она обеспечивает постоянство формы льда).

Лёд - минерал с хим. формулой H 2 O , представляет собой воду в кристаллическом состоянии.
Химический состав льда: Н — 11,2%, О — 88,8%. Иногда содержит газообразные и твердые механические примеси.
В природе лёд представлен, главным образом, одной из нескольких кристаллических модификаций, устойчивой в интервале температур от 0 до 80°C, имеющей точку плавления 0°С. Известны 10 кристаллических модификаций льда и аморфный лёд. Наиболее изученным является лёд 1-й модификации - единственная модификация, обнаруженная в природе. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного и др.), а также в виде снега, инея и т.д.

Смотрите так же:

СТРУКТУРА

Кристаллическая структура льда похожа на структуру : каждая молекула Н 2 0 окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76Α и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является ажурной, что влияет на его плотность (0,917). Лед имеет гексагональную пространственную решётку и образуется путём замерзания воды при 0°С и атмосферном давлении. Решётка всех кристаллических модификаций льда имеет тетраэдрическое строение. Параметры элементарной ячейки льда (при t 0°С): а=0,45446 нм, с=0,73670 нм (с - удвоенное расстояние между смежными основными плоскостями). При понижении температуры они меняются крайне незначительно. Молекулы Н 2 0 в решётке льда связаны между собой водородными связями. Подвижность атомов водорода в решётке льда значительно выше подвижности атомов кислорода, благодаря чему молекулы меняют своих соседей. При наличии значительных колебательных и вращательных движений молекул в решётке льда возникают трансляционные соскоки молекул из узла пространственной их связи с нарушением дальнейшей упорядоченности и образованием дислокаций. Этим объясняется проявление у льда специфических реологических свойств, характеризующих зависимость между необратимыми деформациями (течением) льда и вызвавшими их напряжениями (пластичность, вязкость, предел текучести, ползучесть и др.). В силу этих обстоятельств ледники текут аналогично сильно вязким жидкостям, и, таким образом, природные льды активно участвуют в круговороте воды на Земле. Кристаллы льда имеют относительно крупные размеры (поперечный размер от долей миллиметра до нескольких десятков сантиметров). Они характеризуются анизотропией коэффициента вязкости, величина которого может меняться на несколько порядков. Кристаллы способны к переориентации под действием нагрузок, что влияет на их метаморфизацию и скорости течения ледников.

СВОЙСТВА

Лёд бесцветен. В больших скоплениях он приобретает синеватый оттенок. Блеск стеклянный. Прозрачный. Спайности не имеет. Твердость 1,5. Хрупкий. Оптически положительный, показатель преломления очень низкий (n = 1,310, nm = 1,309). В природе известны 14 модификаций льда. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии и обозначающегося как лёд I , образуются в условиях экзотических - при очень низких температурах (порядка -110150 0С) и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров - это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

МОРФОЛОГИЯ

В природе лёд — очень распространенный минерал. В земной коре существует несколько разновидностей льда: речной, озёрный, морской, грунтовый, фирновый и глетчерный. Чаще он образует агрегатные скопления мелкокристаллических зерен. Известны также кристаллические образования льда, возникающие сублимационным путем, т. е. непосредственно из парообразного состояния. В этих случаях лед имеет вид скелетных кристаллов (снежинки) и агрегатов скелетного и дендритного роста (пещерный лёд, изморозь, иней и узоры на стекле). Крупные хорошо огранённые кристаллы встречаются, но очень редко. Н. Н. Стуловым описаны кристаллы льда северо-восточной части России, встреченные на глубине 55-60 м. от поверхности, имеющие изометрический и столбчатый облик, причем длина наибольшего кристалла равнялась 60 см., а диаметр его основания - 15 см. Из простых форм на кристаллах льда выявлены только грани гексагональной призмы (1120), гексагональной бипирамиды (1121) и пинакоида (0001).
Ледяные сталактиты, называемые в просторечии «сосульки», знакомы каждому. При перепадах температур около 0° в осенне-зимние сезоны они растут повсеместно на поверхности Земли при медленном замерзании (кристаллизации) стекающей и капающей воды. Они обычны также в ледяных пещерах.
Ледяные забереги представляют собой полосы ледяного покрова из льда, кристаллизующегося на границе вода-воздух вдоль краёв водоёмов и окаймляющие края луж, берега рек, озёр, прудов, водохранилищ, и тп. при незамерзающей остальной части водного пространства. При их полном срастании на поверхности водоёма образуется сплошной ледяной покров.
Лёд образует также параллельно-шестоватые агрегаты в виде волокнистых прожилков в пористых грунтах, а на их поверхности — ледяные антолиты.

ПРОИСХОЖДЕНИЕ

Лёд образуется в основном в водных бассейнах при понижении температуры воздуха. На поверхности воды при этом появляется ледяная каша, сложенная из иголочек льда. Снизу на неё нарастают длинные кристаллики льда, у которых оси симметрии шестого порядка размещаются перпендикулярно к поверхности корочки. Соотношения между кристаллами льда при разных условиях образования показаны на рис. Лед распространен всюду, где имеется влага и где температура опускается ниже 0° С. В некоторых районах грунтовый лед оттаивает только на незначительную глубину, ниже которой начинается вечная мерзлота. Это так называемые районы вечной мерзлоты; в областях распространения многолетнемерзлых пород в верхних слоях земной коры встречаются так называемые подземные льды, среди которых различают современный и ископаемый подземный лёд. Не менее 10% всей площади суши Земли покрывают ледники, слагающая их монолитная ледяная порода носит название ледниковый лёд. Ледниковый лёд образуется в основном из скопления снега в результате его уплотнения и преобразования. Ледниковый покров занимает около 75% площади Гренландии и почти всю Антарктиду; самая большая мощность ледников (4330 м.) – установлена близ станции Бэрд (Антарктида). В центральной Гренландии толщина льда достигает 3200 м.
Месторождения льда общеизвестны. В местностях с холодной долгой зимой и коротким летом, а также в высокогорных районах образуются ледяные пещеры со сталактитами и сталагмитами, среди которых наиболее интересными являются Кунгурская в Пермской области Приуралья, а также пещера Добшине в Словакии.
В результате замерзания морской воды образуется морской лёд. Характерными свойствами морского льда являются солёность и пористость, которые определяют диапазон его плотности от 0,85 до 0,94 г/см 3 . Из-за такой малой плотности льдины возвышаются над поверхностью воды на 1/7-1/10 своей толщины. Морской лёд начинает таять при температуре выше -2,3° С; он более эластичен и труднее поддается раздроблению на части, чем лёд пресноводный.

ПРИМЕНЕНИЕ

В конце 1980-х годов лаборатория Аргонн разработала технологию изготовления ледяной гидросмеси (Ice Slurry), способной свободно течь по трубам различного диаметра, не собираясь в ледяные наросты, не слипаясь и не забивая системы охлаждения. Солёная водяная суспензия состояла из множества очень мелких ледяных кристалликов округлой формы. Благодаря этому сохраняется подвижность воды и, одновременно, с точки зрения теплотехники она представляет собой лёд, который в 5-7 раз эффективнее простой холодной воды в системах охлаждения зданий. Кроме того, такие смеси перспективны для медицины. Опыты на животных показали, что микрокристаллы смеси льда прекрасно проходят в довольно мелкие кровеносные сосуды и не повреждают клетки. «Ледяная кровь» удлиняет время, в течение которого можно спасти пострадавшего. Скажем, при остановке сердца это время удлиняется, по осторожным оценкам, с 10-15 до 30-45 минут.
Использование льда в качестве конструкционного материала широко распространено в приполярных регионах для строительства жилищ - иглу. Лёд входит в состав предложенного Д. Пайком материала Пайкерит, из которого предлагалось сделать самый большой в мире авианосец.

Лед (англ. Ice) — H 2 O

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 4/A.01-10
Nickel-Strunz (10-ое издание) 4.AA.05
Dana (8-ое издание) 4.1.2.1
Hey’s CIM Ref. 7.1.1

Ещё один вид кристаллов известен всем. Эти кристаллы почти полгода (а в полярных областях и круглый год) покрывают необозримые пространства Земли, лежат на вершинах гор и сползают с них ледниками, плавают айсбергами в океанах. Это – кристаллы замерзшей воды, то есть лёд и снег.

Каждый отдельный кристаллик льда, каждая снежинка хрупка и мала. Часто говорят, что снег падает, как пух. Но даже и это сравнение, можно сказать, слишком «тяжёлое»: ведь каждая снежинка примерно в десять раз легче пушинки. Десяток тысяч снежинок весит столько же, сколько весит одна копейка. Но, соединяясь в огромных количествах вместе, снежные кристаллы могут, например, остановить поезд, образовав сугробы на железнодорожных путях; они могут даже сдвигать и разрушать скалы, как это делают снежные лавины и ледники.

Нескончаемо разнообразны шестилучевые звёздочки снежинок.

Прикоснитесь пальцем к снежинке, и она мгновенно растает от теплоты вашей руки. Сбросьте снежинку с рукава пальто, – вы, конечно, не услышите, как она упала, а может быть, и сломалась. Но прислушайтесь, как скрипит у вас под ногами свежевыпавший снег. Что это за скрип? Это трещат и ломаются миллионы снежных кристалликов. В ясную погоду снег мерцает и искрится, «играет» на солнце. Как от миллионов крохотных зеркал, отражаются лучи света от плоских граней кристалликов снега.

Отдельными кристалликами снега – снежинками – вы, наверно, не раз любовались.

«Мелькает, вьётся первый снег, Звездами падая на брег»,–

говорит о снеге А. С. Пушкин. Действительно, все снежинки – шестилучевые звёздочки или изредка – шестисторонние пластинки.


Фотографии снежинок из атласа Бентлея.

На снежинках легче всего убедиться в том, что кристаллы обычно имеют правильную и симметричную форму. Бесконечно разнообразны формы снежинок. Один натуралист больше пятидесяти лет занимался фотографированием снежинок под микроскопом. Он составил атлас нескольких тысяч фотографий снежинок, и все эти снежинки различны, вы не найдёте там ни одной пары одинаковых. Но всё-таки наверняка можно сказать, что в этом атласе собраны отнюдь не все формы снежинок; можно снять ещё много тысяч таких фотографий и всё же не исчерпать колоссального разнообразия форм кристаллов снега.

Интересно сравнить современные фотографии снежинок с рисунком, взятым из старинной шведской книги «История северных народов» Олафа Магнуса. Вот наглядное свидетельство того, что люди давно уже обратили внимание на удивительные формы снежинок. Но как наивны эти рисунки четырёхсотлетней давности и как мало похожи они на истинные узоры снежных кристаллов!


Рисунки снежинок из книги Олафа Магнуса «История северных народов», изданной в 1555 году.

Ледяной покров реки, массив ледника или айсберга – это отнюдь не один большой кристалл. Плотная масса льда обычно является поликристаллической, то есть состоит из множества отдельных кристаллов; их не всегда разглядишь, потому что они мелкие и все срослись вместе. Иногда эти кристаллы можно различить в тающем льду, например, весной на реке. Тогда видно, что лёд состоит как бы из «карандашиков», сросшихся вместе, причём все «карандашики» параллельны друг другу и стоят перпендикулярно к поверхности воды; эти «карандашики» и есть отдельные кристаллики льда.


Лёд под микроскопом. Видны очертания сросшихся шестигранных кристалликов и мельчайшие пузырьки воды в тех местах, где началось таяние.

Известно, как опасны для растений весенние или осенние заморозки. Когда температура почвы и воздуха падает ниже нуля, подпочвенные воды и соки растений замерзают, образуя иголочки кристалликов льда. Эти острые иголки рвут нежные ткани растений, листья сморщиваются и чернеют, корни разрушаются.

После морозных ночей по утрам в лесу и в поле часто можно наблюдать, как на поверхности земли вырастает «ледяная трава». Каждый стебелёк такой травы – это прозрачный шестигранный или трёхгранный кристаллик льда. Ледяные иголочки достигают длины в 1-2 сантиметра, а иногда доходят до 10-12 сантиметров. В иных случаях земля оказывается покрытой пластинками льда, лежащими или стоящими торчком. Вырастая из земли, эти кристаллики льда поднимают на своих головках песок, гальку, камешки до 50-100 граммов весом. Льдинки даже выталкивают из земли и уносят вверх маленькие растения. Иногда ледяная корка обволакивает растение, и корень просвечивает сквозь лёд. Бывает и так, что щёточка ледяных иголок поднимает тяжёлый камень, сдвинуть который не под силу одному кристаллику. Искрится и горит радужным блеском хрустальная «ледяная трава», но лишь только пригреют лучи солнца, кристаллики изгибаются навстречу солнцу, падают и быстро тают.

Побывайте в лесу в морозный весенний или осенний день рано утром, когда солнце ещё не успело уничтожить следы ночных заморозков. Деревья и кусты покрыты инеем. На ветках повисли капли льда. Вглядитесь, внутри ледяных капель видны пучки тонких шестигранных иголочек – кристал-ликов льда. Покрытые инеем листья кажутся щётками: как щетинки, стоят на них блестящие шестигранные столбики кристаллов льда. Сказочным богатством кристаллов, хрустальным узором украшен лес.

Из 14 известных на сегодняшний день форм твердой воды в природе мы встречаем только одну — лед. Остальные образуются в экстремальных условиях и для наблюдений вне специальных лабораторий недоступны. Самое интригующее свойство льда — это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки фирна на снежном поле или же гигантских ледниковых масс.

В небольшом японском городе Кага, расположенном на западном берегу острова Хонсю, есть необычный музей. Снега и льда. Основал его Укихиро Накайя — первый человек, который научился выращивать в лаборатории искусственные снежинки, такие же красивые, как и те, что падают с неба. В этом музее посетителей со всех сторон окружают правильные шестиугольники, потому что именно такая — гексагональная — симметрия свойственна кристаллам обычного льда (кстати, греческое слово kristallos, собственно, и означает «лед»). Она определяет многие уникальные его свойства и заставляет снежинки, при всем бесконечном их разнообразии, расти в форме звездочек с шестью, реже — тремя или двенадцатью лучами, но никогда — с четырьмя или пятью.

Молекулы в ажуре

Разгадка структуры твердой воды кроется в строении ее молекулы. Н2О можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием). В центре находится кислород, в двух вершинах — по водороду, точнее — протону, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, отчего их называют неподеленными.

При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, которые не позволяют при замерзании создавать плотную структуру. Этот невидимый каркас из водородных связей располагает молекулы в виде ажурной сетки с полыми каналами. Стоит лед нагреть, как кружево рушится: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, — вот почему вода тяжелее льда.

Лед, который образуется при атмосферном давлении и плавится при 0°С, — самое привычное, но все еще не до конца понятное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода выстроены упорядоченно, образуя правильные шестиугольники, а вот атомы водорода занимают самые разные положения вдоль связей. Такое поведение атомов вообще-то нетипично — как правило, в твердом веществе все подчиняются одному закону: либо все атомы расположены упорядоченно, и тогда это — кристалл, либо случайно, и тогда это — аморфное вещество.

Лед трудно расплавить, как бы ни странно это звучало. Не будь водородных связей, сцепляющих молекулы воды, он плавился бы при –90°С. При этом, замерзая, вода не уменьшается в объеме, как это происходит с большинством известных веществ, а увеличивается — за счет образования ажурной структуры льда.

К «странностям» льда относят и генерацию электромагнитного излучения его растущими кристаллами. Давно известно, что большинство растворенных в воде примесей не передается льду, когда он начинает расти, проще говоря, вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. Примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом получается ледовая структура.

Неправильный лед

В твердом состоянии вода насчитывает, по последним данным, 14 структурных модификаций. Есть среди них кристаллические (их большинство), есть аморфные, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, образуются в условиях экзотических — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Например, при температуре ниже –110°С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110°, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

Две последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предсказание 40-летней давности о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень велика, и собраться вместе молекулам сверхчистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Помог катализатор — соляная кислота, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но их можно поискать на замерзших спутниках других планет.

Комиссия решила так

Снежинка — это монокристалл льда, вариация на тему гексагонального кристалла, но выросшего быстро, в неравновесных условиях. Над тайной их красоты и бесконечного разнообразия не одно столетие бьются самые пытливые умы. Астроном Иоганн Кеплер в 1611 году написал целый трактат «О шестиугольных снежинках». В 1665 году Роберт Гук в огромном томе зарисовок всего, что он увидел с помощью микроскопа, опубликовал множество рисунков снежинок самой разной формы. Первую удачную фотографию снежинки под микроскопом сделал в 1885 году американский фермер Уилсон Бентли. С тех пор он уже не мог остановиться. До конца жизни, сорок с лишним лет, Бентли фотографировал их. Более пяти тысяч кристаллов, и ни одного одинакового.

Самые знаменитые последователи дела Бентли — это уже упомянутый Укихиро Накайя и американский физик Кеннет Либбрехт . Накайя впервые предположил, что величина и форма снежинок зависят от температуры воздуха и содержания в нем влаги, и блистательно подтвердил эту гипотезу экспериментально, выращивая в лаборатории кристаллы льда разной формы. А Либбрехт у себя в и вовсе стал выращивать снежинки на заказ — заранее заданной формы.

Жизнь снежинки начинается с того, что в облаке водяного пара при понижении температуры образуются кристаллические зародыши льда. Центром кристаллизации могут быть пылинки, любые твердые частицы или даже ионы, но в любом случае эти льдинки размером меньше десятой доли миллиметра уже имеют гексагональную кристаллическую решетку.

Водяной пар, конденсируясь на поверхности этих зародышей, образует сначала крошечную гексагональную призму, из шести углов которой начинают расти совершенно одинаковые ледяные иголочки — боковые отростки. Одинаковые просто потому, что температура и влажность вокруг зародыша тоже одинаковые. На них в свою очередь вырастают, как на дереве, боковые отростки — веточки. Подобные кристаллы так и называют дендритами, то есть похожими на дерево.

Передвигаясь вверх и вниз в облаке, снежинка попадает в условия с разной температурой и концентрацией водяного пара. Ее форма меняется, до последнего подчиняясь законам гексагональной симметрии. Так снежинки становятся разными. Хотя теоретически в одном облаке на одной высоте они могут «зародиться» одинаковыми. Но путь до земли у каждой свой, довольно долгий — в среднем снежинка падает со скоростью 0,9 км в час. А значит, у каждой — своя история и своя окончательная форма. Образующий снежинку лед прозрачен, но когда их много, солнечный свет, отражаясь и рассеиваясь на многочисленных гранях, создает у нас впечатление белой непрозрачной массы — мы называем ее снегом.

Чтобы не путаться с многообразием снежинок, Международная комиссия по снегу и льду приняла в 1951 году довольно простую классификацию кристаллов льда: пластинки, звездчатые кристаллы, столбцы или колонны, иглы, пространственные дендриты, столбцы с наконечниками и неправильные формы. И еще три вида обледенелых осадков: мелкая снежная крупка, ледяная крупка и град.

Тем же законам подчиняется и рост инея, изморози и узоров на стеклах. Эти явления, как и снежинки, образуются при конденсации, молекула за молекулой — на земле, траве, деревьях. Узоры на окне появляются в мороз, когда на поверхности стекла конденсируется влага теплого комнатного воздуха. А вот градины получаются при застывании капель воды или когда в насыщенных водяным паром облаках лед плотными слоями намерзает на зародыши снежинок. На градины могут намерзать другие, уже сформировавшиеся снежинки, сплавляясь с ними, благодаря чему градины принимают самые причудливые формы.

Нам на Земле довольно и одной твердой модификации воды — обычного льда. Он буквально пронизывает все области обитания или пребывания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Горные ледники , ледяные покровы акваторий, вечная мерзлота, да и просто сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. А лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.

Ольга Максименко, кандидат химических наук

Предлагаем вашему вниманию фотографии кристаллов природной воды и воды из водопроводов крупнейших городов мира.

Природная вода

Хорошо сформированные, похожие на ювелирные украшения кристаллы образовались из воды рек, ручьев и ледников.

Кристалл сияет, как солнце. Этот источник питается талыми водами пиков Яцугатакэ – воплощенной красоты природы.

Кристалл слева образован водой из источника, расположенного на берегу озера Тюдзэндэи. Хлорирование воды по требованию местных властей привело к значительному изменению ее свойств, что показывает фотография справа.

Кристалл из Фонтана ди Треви в Италии уникален и напоминает монеты, которые туристы бросают в фонтан.

Родниковая вода богатой алмазами Тасмании порождает кристаллы, похожие на маленькие бриллианты. Грунтовые воды экологически чистой Новой Зеландии также образуют очень красивые кристаллы.

На Южном полюсе тысячелетние снега слежались в твердую массу. Кристалл этой воды также выглядит очень твердым. Вода для обеих этих проб была получена из поверхностных слоев снега и льда, поэтому она не совсем девственно чиста.

Это кристаллы из воды, которую собирали в Швейцарии.

Водопроводная вода городов мира

Получить кристаллы из водопроводной воды удается лишь в очень немногих городах мира. Все дело, по-видимому, в химической обработке воды.

Кристаллы не образуются в результате обработки воды веществами, вредящими ее природной жизнетворной силе.

Даже в Венеции, "городе на воде", водопроводная вода не может породить кристаллов. Вода швейцарского Берна в этом смысле гораздо лучше.

Как это ни удивительно, вода некоторых американских мегаполисов образует прекрасные кристаллы. Возможно, это результат мероприятий по защите воды.

Ванкуверская вода образовала относительно завершенные кристаллы – возможно, благодаря обильному стоку со Скалистых гор. Вода Сиднея смогла породить лишь какой-то кривой "бублик".

Это кристаллы из двух городов Южной Америки. Хорошие кристаллы дала вода аргентинского Буэнос-Айреса. Манаус расположен в Бразилии, на берегах изобильной реки Амазонки.

Интересные факты о воде:
- Человеческое тело в среднем на 70 % состоит из воды.

Одна из самых больших загадок воды заключается в том простом факте, что лед плавает в ней. Когда любое другое вещество переходит из жидкого состояния в твердое, его плотность возрастает и вещество становится сравнительно более тяжелым.

Если бы вода вела себя как все другие вещества и лед опускался бы на дно, то и нас с вами, возможно, не было бы. Каждый раз, когда температура опускалась бы, дно озер и океанов превращалось бы в сплошной лед и все живые существа погибали.

Вода также обладает уникальной способностью растворять другие вещества и вымывать их. Только подумайте, как много веществ может раствориться в воде и как трудно вернуть воду к ее исходному чистому состоянию.

По одной из теорий, вода имеет внеземное происхождение и она была занесена на нашу планету из космоса на кометах.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «woodmaster-shop.ru» — Водонагреватели. Отопление. Счетчики воды. Бойлеры. Ванны. Унитаз. Раковины