Оксиды. Окислительно-восстановительные свойства оксидов металлов

Черный оксид Black oxide - Черный оксид .

Оксид черного цвета на поверхности металла, полученный в результате погружения в расплав или горячий раствор солей.

(Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.)


Смотреть что такое "Черный оксид" в других словарях:

    Оксид меди(II) … Википедия

    Оксид меди(II) Общие Систематическое наименование Оксид меди(II)) Химическая формула … Википедия

    У этого термина существуют и другие значения, см. Оксид ванадия. Оксид ванадия(III) Общие Химическая формула V2O3 Эмпирическая формула O3V2 Физические свойства … Википедия

    Фосфор(P) Атомный номер 15 Внешний вид простого вещества Белый фосфор белый, восковидный, слегка фосфоресцирующий Свойства атома Атомная масса (молярная масса) 30,973762 а. е. м. (г/моль) Радиус атома … Википедия

    Бисмутум оксидатум - Bismutum oxydatum, Висмута оксид - Встречается в виде природного минерала бисмита, получается также прокаливанием карбоната или нитрата висмута. Порошок лимонно желтого цвета В воде не растворяется. В гомеопатии используется химически чистый оксид висмута. Приготовление… … Справочник по гомеопатии

    У этого термина существуют и другие значения, см. Ванадий (значения). 23 Титан ← Ванадий → Хром … Википедия

    Существуют следующие хлориды хрома: Название Формула Температура плавления Температура кипения Цвет Оксид хрома(II) CrO черный Оксид хрома(III) Cr2O3 2440 °C 3000 °C зеленый Оксид хрома(IV) CrO2 … Википедия

    Cu (cuprum), химический элемент IB подгруппы (семейства монетных металлов Cu, Ag, Au) периодической системы элементов. Известна и широко используется с древних времен (медный век, бронзовый век). Медь наряду с серебром и золотом используется для… … Энциклопедия Кольера

    И; ж. 1. Химический элемент (Сu), ковкий металл желтого цвета с красноватым отливом (широко применяется в промышленности). Добыча меди. Надраить м. самовара. Изготовить из меди котелок. 2. собир. Изделия из этого металла. Вся м. в подвале… … Энциклопедический словарь

    Действующее вещество ›› Железа сульфат + Фолиевая кислота* + Цианокобаламин* (Ferrous sulfate + Folic acid + Cyanocobalamin) Латинское название Ferro Folgamma АТХ: ›› B03AE01 Препараты железа в комбинации с витамином B12 и фолиевой кислотой… … Словарь медицинских препаратов

Оксиды - это бинарные соединения элемента с кислородом, находящимся в степени окисления (-2). Оксиды являются характеристическими соединениями для химических элементов . Неслучайно Д.И. Менделеев при составлении периодической таблицы ориентировался на стехиометрию высшего оксида и объединял в одну группу элементы с одинаковой формулой высшего оксида. Высший оксид - это оксид, в котором элемент присоединил максимально возможное для него количество кислородных атомов. В высшем оксиде элемент находится в своей максимальной (высшей) степени окисления. Так, высшие оксиды элементов VI группы, как неметаллов S, Se, Te, так и металлов Cr, Mo, W, описываются одинаковой формулой ЭО 3 . Все элементы группы проявляют наибольшее сходство именно в высшей степени окисления. Так, например, все высшие оксиды элементов VI группы - кислотные.

Оксиды - это самые распространенные соединения в металлургических технологиях .

Многие металлы находятся в земной коре в виде оксидов . Из природных оксидов получают такие важные металлы, как Fe, Mn, Sn, Cr.

В таблице приведены примеры природных оксидов, используемых для получения металлов.

Ме Оксид Минерал
Fe Fe 2 O 3 и Fe 3 O 4 Гематит и магнетит
Mn MnO 2 пиролюзит
Cr FeO . Cr 2 O 3 хромит
Ti TiO 2 и FeO . TiO 2 Рутил и ильменит
Sn SnO 2 Касситерит
Оксиды являются целевыми соединениями в ряде металлургических технологий . Природные соединения предварительно переводят в оксиды, из которых затем восстанавливают металл. Например, природные сульфиды Zn, Ni, Co, Pb, Mo обжигают, превращая в оксиды.

2ZnS + 3O 2 = 2 ZnO + 2SO 2

Природные гидроксиды и карбонаты подвергают термическому разложению, приводящему к образованию оксида.

2MeOOH = Me 2 O 3 + H 2 O

MeCO 3 = MeO + CO 2

Кроме того, поскольку металлы, находясь в окружающей среде, окисляются кислородом воздуха, а при высоких температурах, характерных для многих металлургических производств, окисление металлов усиливается, необходимы знания о свойствах получаемых оксидов.

Приведенные выше причины объясняют, почему при обсуждении химии металлов оксидам уделяется особое внимание.

Среди химических элементов металлов - 85, и многие металлы имеют не по одному оксиду, поэтому класс оксидов включает огромное количество соединений, и эта многочисленность делает обзор их свойств непростой задачей. Тем не менее, постарается выявить:

  • общие свойства, присущие всем оксидам металлов,
  • закономерности в изменениях их свойств,
  • выявим химические свойства оксидов, наиболее широко используемых в металлургии,
  • приведем некоторые из важных физических характеристик оксидов металлов.

Оксиды металлов различаются стехиометрическим соотношением атомов металла и кислорода . Эти стехиометрические соотношения определяют степень окисления металла в оксиде.

В таблице приведены стехиометрические формулы оксидов металлов в зависимости от степени окисления металла и указано, какие именно металлы способны образовывать оксиды данного стехиометрического типа.

Помимо таких оксидов, которые в общем случае могут быть описаны формулой МеО Х/2 , где Х - это степень окисления металла, существуют также оксиды, содержащие металл в разных степенях окисления, например, Fe 3 O 4 , а также, так называемые, смешанные оксиды, например, FeO . Cr 2 O 3 .

Не все оксиды металлов имеют постоянный состав, известны оксиды переменного состава, например, TiOx, где x = 0,88 - 1,20; FeOx, где x = 1,04 - 1,12 и др.

Оксиды s-металлов имеют только по одному оксиду. Металлы p- и d- блоков, как правило, имеют несколько оксидов, исключение Al, Ga, In и d-элементы 3 и 12 групп.

Оксиды типа MeO и Ме 2 О 3 образуют почти все d-металлы 4 периода . Для большинства d-металлов 5 и 6 периодов характерны оксиды, в которых металл, находится в высоких степенях окисления ³ 4 . Оксиды типа МеО, образуют только Cd, Hg и Pd; типа Me 2 O 3 , помимо Y и La, образуют Au, Rh; серебро и золото образуют оксиды типа Ме 2 O.

  • Стехиометрические типы оксидов металлов

    Степень окисления Тип оксида Металлы, образующие оксид
    +1 Me 2 O Металлы 1 и 11 групп
    +2 MeO Все d -металлы 4 периода (кроме Sc), все металлы 2 и 12 групп , а также Sn, Pb; Cd, Hg и Pd
    +3 Me 2 O 3 Почти все d -металлы 4 периода (кроме Cu и Zn), все металлы 3 и 13 групп , Au, Rh
    +4 MeO 2 Металлы 4 и 14 групп и многие другие d-металлы: V, Nb, Ta; Cr, Mo, W; Mn, Tc, Re; Ru, Os; Ir, Pt
    +5 Me 2 O 5 Металлы 5 и 1 5 групп
    +6 MeO 3 Металлы 6 группы
    +7 Me 2 O 7 Металлы 7 группы
    +8 MeO 4 Os и Ru
  • Структура оксидов

  • Подавляющее большинство оксидов металлов при обычных условиях - это твердые кристаллические вещества. Исключение - кислотный оксид Mn 2 O 7 (это жидкость темно-зеленого цвета). Лишь очень немногие кристаллы кислотных оксидов металлов имеют молекулярную структуру, это кислотные оксиды с металлом в очень высокой степени окисления: RuO 4 , OsO4, Mn 2 O 7 , Tc 2 O 7 , Re 2 O 7 .

    В самом общем виде структуру многих кристаллических оксидов металлов можно представить как регулярное трехмерное расположение кислородных атомов в пространстве, в пустотах между кислородными атомами находятся атомы металлов. Поскольку кислород - это очень электроотрицательный элемент, он перетягивает часть валентных электронов от атома металла, преобразуя его в катион, а сам кислород переходит в анионную форму и увеличивается в размерах за счет присоединения чужих электронов. Крупные кислородные анионы образуют кристаллическую решетку, а в пустотах между ними размещаются катионы металлов. Только в оксидах металлов, находящихся в небольшой степени окисления и отличающихся небольшим значение электроотрицательности, связь в оксидах можно рассматривать как ионную. Практически ионными являются оксиды щелочных и щелочноземельных металлов. В большинстве оксидов металлов химическая связь оказывается промежуточной между ионной и ковалентной . С повышением степени окисления металла вклад ковалентной составляющей возрастает.

  • Кристаллические структуры оксидов металлов

  • Координационные числа металлов в оксидах

    Металл в оксидах характеризуется не только степенью окисления, но и координационным числом , указывающим, какое количество кислородных атомов он координирует .

    Очень распространенным в оксидах металлов является координационное число 6, в этом случае катион металла находится в центре октаэдра, образованного шестью кислородными атомами. Октаэдры так упаковываются в кристаллическую решетку, чтобы выдерживалось стехиометрическое соотношение атомов металла и кислорода. Так в кристаллической решетке оксида кальция, координационное число кальция равно 6. Кислородные октаэдры с катионом Ca 2+ в центре так объединяются между собой, что каждый кислород оказывается в окружении шести атомов кальция, т.е. кислород принадлежит одновременно 6 атомам кальция. Говорят, что такой кристалл имеет координацию (6, 6). Первым указывается координационное число катиона, а вторым аниона. Таким образом формулу оксида СаО следовало бы записать
    СаО 6/6 ≡ СаО.
    В оксиде TiO 2 металл также находится в октаэдрическом окружении кислородных атомов, часть кислородных атомов соединяется противоположными ребрами, а часть вершинами. В кристалле рутила TiO 2 координация (6, 3) означает, что кислород принадлежит трем атомам титана. Атомы титана образуют в кристаллической решетке рутила прямоугольный параллепипед.

    Кристаллические структуры оксидов достаточно разнообразны. Металлы могут находиться не только в октаэдрическом окружении из кислородных атомов, но и в тетраэдрическом окружении, например в оксиде BeO ≡ BeO 4|4 . В оксиде PbO, также имеющем координацию кристалла (4,4), свинец оказывается в вершине тетрагональной призмы, в основании которой находятся атомы кислорода.

    Атомы металла могут находиться в разном окружении кислородных атомов, например в октаэдрических и в тетраэдрических пустотах, и металл при этом оказывается в разных степенях окисления , как например, в магнетите Fe 3 O 4 ≡ FeO . Fe 2 O 3 .

    Дефекты в кристаллических решетках объясняют непостоянство состава некоторых оксидов.

    Представление о пространственных структурах позволяет понять причины образования смешанных оксидов. В пустотах между кислородными атомами могут находиться атомы не одного металла, а двух разных , как например,
    в хромите FeO . Cr 2 O 3 .

  • Структура рутила

  • Некоторые физические свойства оксидов металлов

    Подавляющее большинство оксидов при обычной температуре это твердые вещества. Они имеют меньшую плотность, чем металлы.

    Многие оксиды металлов являются тугоплавкими веществами . Это позволяет использовать тугоплавкие оксиды как огнеупорные материалы для металлургических печей.

    Оксид CaO получают в промышленном масштабе в объеме 109 млн т/год. Его используют для футеровки печей. В качестве огнеупоров используют также оксиды BeO и MgO. Оксид MgO один из немногих огнеупоров очень устойчивых к действию расплавленных щелочей.

    Иногда тугоплавкость оксидов создает проблемы при получении металлов электролизом из их расплавов. Так оксид Al 2 O 3 , имеющий температуру плавления около 2000 о С, приходится смешивать с криолитом Na 3 , чтобы снизить температуру плавления до ~ 1000 о С, и через этот расплав пропускать электрический ток.

    Тугоплавкими являются оксиды d-металлов 5 и 6 периодов Y 2 O 3 (2430), La 2 O 3 (2280), ZrO 2 (2700), HfO 2 (2080), Ta 2 O 5 (1870), Nb 2 O 5 (1490), а также многие оксиды d-металлов 4 периода (см. табл.). Высокие температуры плавления имеют все оксиды s-металлов 2 группы, а также Al 2 O 3 , Ga 2 O 3 , SnО,SnO 2 , PbO (см. табл.).

    Низкие температуры плавления (о С) обычно имеют кислотные оксиды: RuO 4 (25), OsO 4 (41); Te 2 O 7 (120), Re 2 O 7 (302), ReO 3 (160), CrO 3 (197). Но некоторые кислотные оксиды имеют достаточно высокие температуры плавления (о С): MoO 3 (801) WO 3 (1473), V 2 O 5 (680).

    Некоторые из основных оксидов d-элементов, завершающих ряды, оказываются непрочными, плавятся при низкой температуре или при нагревании разлагаются. Разлагаются при нагревании HgO (400 o C), Au 2 O 3 (155), Au 2 O, Ag 2 O (200), PtO 2 (400).

    При нагревании выше 400 о С разлагаются и все оксиды щелочных металлов с образованием металла и пероксида. Оксид Li 2 O более устойчив и разлагается при температуре выше 1000 о С.

    В таблице, приведенной ниже, приводятся некоторые характеристики d-металлов 4 периода, а также s- и p-металлов.

  • Характеристики оксидов s- и р-металлов

    Me Оксид Цвет Т пл., оС Кислотно-основной характер
    s-металлы
    Li Li 2 O белый Все оксиды разлагаются при
    T > 400 о С, Li 2 O при Т > 1000 o C
    Все оксиды щелочных металлов основные, растворяются в воде
    Na Na 2 O белый
    K K 2 O желтый
    Rb Rb 2 O желтый
    Cs Cs 2 O оранжевый
    Be BeO белый 2580 амфотерный
    Mg MgO белый 2850 основной
    Ca CaO белый 2614 Основные, ограниченно растворяются в воде
    Sr SrO белый 2430
    Ba BaO белый 1923
    p-металлы
    Al Al 2 O 3 белый 2050 амфотерный
    Ga Ga 2 O 3 желтый 1795 амфотерный
    In In 2 O 3 желтый 1910 амфотерный
    Tl Tl 2 O 3 коричневый 716 амфотерный
    Tl 2 O черный 303 основной
    Sn SnO темно-синий 1040 амфотерный
    SnO 2 белый 1630 амфотерный
    Pb PbO красный Переходит в желтый при Т > 490 о С амфотерный
    PbO желтый 1580 амфотерный
    Pb 3 O 4 красный Разл.
    PbO 2 черный Разл. При 300 о С амфотерный
    Химические свойства (см. по ссылке)
  • Характеристики оксидов d-металлов 4 периода

    Оксид Цвет r, г/см3 Т пл., оС - ΔGo, кДж/моль - ΔHo, кДж/моль Преобладающий

    Кислотно-основной характер

    Sc Sc 2 O 3 белый 3,9 2450 1637 1908 основной
    Ti TiO коричневый 4,9 1780, p 490 526 основной
    Ti 2 O 3 фиолетовый 4,6 1830 1434 1518 основной
    TiO 2 белый 4,2 1870 945 944 амфотерный
    V VO серый 5,8 1830 389 432 основной
    V 2 O 3 черный 4,9 1970 1161 1219 основной
    VO 2 синий 4,3 1545 1429 713 амфотерный
    V 2 O 5 оранжевый 3,4 680 1054 1552 кислотный
    Cr Cr 2 O 3 зеленый 5,2 2335 p 536 1141 амфотерный
    CrO 3 красный 2,8 197 p 513 590 кислотный
    Mn MnO Серо-зеленый 5,2 1842 385 385 основной
    Mn 2 O 3 коричневый 4,5 1000 p 958 958 основной
    Mn 3 O 4 коричневый 4,7 1560 p 1388 1388
    MnO 2 коричневый 5,0 535 p 521 521 амфотерный
    Mn 2 O 7 зеленый 2,4 6, 55 p 726 кислотный
    Fe FeO Черный 5,7 1400 265 265 основной
    Fe 3 O 4 черный 5,2 1540 p 1117 1117
    Fe 2 O 3 коричневый 5,3 1565 p 822 822 основной
    Co CoO Серо-зеленый 5,7 1830 213 239 основной
    Co 3 O 4 черный 6,1 900 p 754 887
    Ni NiO Серо-зеленый 7,4 1955 239 240 основной
    Cu Cu 2 O оранжевый 6,0 1242 151 173 основной
    CuO черный 6,4 800 p 134 162 основной
    Zn ZnO белый 5,7 1975 348 351 амфотерный
    Химические свойства (см. по ссылке)
  • Кислотно-основной характер оксидов зависит от степени окисления металла и от природы металла.

    Чем ниже степень окисления, тем сильнее проявляются основные свойства. Если металл находится в степени окисления Х £ 4 , то его оксид имеет либо основной, либо амфотерный характер.

    Чем выше степень окисления, тем сильнее выражены кислотные свойства . Если металл находится в степени окисления Х 5 , то его гидроксид имеет кислотный характер.

    Кроме кислотных и основных оксидов существуют амфотерные оксиды, проявляющие одновременно и кислотные и основные свойства .

    Амфотерны все оксиды p-металлов, кроме Tl 2 O .

    Из s -металлов только Be имеет амфотерный оксид.

    Среди d-металлов амфотерными являются оксиды ZnO, Cr 2 O 3 , Fe 2 O 3 , Au 2 O 3 , и практически все оксиды металлов в степени окисления +4 за исключением основных ZrO 2 и HfO 2 .

    Большинство оксидов, в том числе, Cr 2 O 3 , Fe 2 O 3 и диоксиды металлов проявляют амфотерность лишь при сплавлении со щелочами. С растворами щелочей взаимодействуют ZnO, VO 2 , Au 2 O 3 .

    Для оксидов, помимо кислотно-основных взаимодействий, т. е. реакций между основными оксидами и кислотами и кислотными оксидами, а также реакций кислотных и амфотерных оксидов со щелочами, характерны также окислительно-восстановительные реакции.

  • Окислительно-восстановительные свойства оксидов металлов

    Поскольку в любых оксидах металл находится в окисленном состоянии, все оксиды без исключения способны проявлять окислительные свойства .

    Самые распространенные реакции в пирометаллургии - это окислительно-восстановительные взаимодействия между оксидами металлов и различными восстановителями, приводящие к получению металла.

    Примеры

    2Fe 2 O 3 + 3C = 4Fe + 3CO 2

    Fe 3 O 4 + 2C = 3Fe + 2CO 2

    MnO 2 +2C = Mn + 2CO

    SnO 2 + C = Sn + 2CO 2

    ZnO + C = Zn + CO

    Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3

    WO 3 + 3H 2 = W + 3H 2 O

    Если металл имеет несколько степеней окисления, то при достаточном повышении температуры становится возможным разложение оксида с выделением кислорода.

    4CuO = 2Cu 2 O + O 2

    3PbO 2 = Pb 3 O 4 + O 2 ,

    2Pb 3 O 4 = O 2 + 6PbO

    Некоторые оксиды, особенно оксиды благородных металлов, при нагревании могут разлагаться с образованием металла.

    2Ag 2 O = 4Ag + O 2

    2Au 2 O 3 = 4Au + 3O 2

    Сильные окислительные свойства некоторых оксидов используются на практике. Например,

    Окислительные свойства оксида PbO 2 используют в свинцовых аккумуляторах, в которых за счет химической реакции между PbO 2 и металлическим свинцом получают электрический ток.

    PbO 2 + Pb + 2H 2 SO 4 = 2PbSO 4 + 2H 2 O

    Окислительные свойства MnO 2 также используют для получения электрического тока в гальванических элементах (электрических батарейках).

    2MnO 2 + Zn + 2NH 4 Cl = + 2MnOOH

    Сильные окислительные свойства некоторых оксидов приводят к их своеобразному взаимодействию с кислотами. Так оксиды PbO 2 и MnO 2 при растворении в концентрированной соляной кислоте восстанавливаются.

    MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O
    Если металл образует несколько оксидов, то оксиды металла в более низкой степени окисления могут окисляться, т. е. проявлять восстановительные свойства.

    Особенно сильные восстановительные свойства проявляют оксиды металлов в низких и неустойчивых степенях окисления, как например. TiO, VO, CrO. При растворении их в воде они окисляются, восстанавливая воду. Их реакции с водой, подобны реакциям металла с водой.

    2TiO + 2H 2 O = 2TiOOH + H 2 .

  • Оксид железа (II) Твёрдое вещество черного цвета. Ионная кристаллическая решетка. Устойчивым оксид железа становится лишь при повышении температуры. Высокая температура плавления и кипения. Нерастворим в воде.

    Оксид железа (II) Разлагается при умеренном нагревании, но при дальнейшем нагревании продуктов разложения образуется вновь: Взаимодействие с кислородом:

    Оксид железа (II) Нагревание железа при низком давлении кислорода: Восстановление оксида железа (III) угарным газом:

    Оксид железа (III) Твёрдое вещество красного цвета. Ионная кристаллическая решётка. Высокая температура плавления и кипения. Нерастворим в воде.

    Гидроксид железа (II) Гидроксид железа(II) - твёрдое вещество с формулой Fe(OH)2. Чистый гидроксид железа(II) - кристаллическое вещество белого цвета. Высокая температура плавления и кипения. Нерастворим в воде.

    Гидроксид железа (II) При нагревании разлагается с образованием оксида железа(II): Проявляет свойства основания - легко вступает в реакции с разбавленными кислотами, например с соляной (образуется раствор хлорида железа(II)):

    Гидроксид железа (III) Гидроксид железа(III) - твёрдое вещество с формулой Fe(OH)3. Гидроксид железа(III) образует красновато-коричневые кристаллы. Высокая температура плавления и кипения. Нерастворим в воде.

    Гидроксид железа (III) Действие щелочей на растворимые соли железа(III).

    «Мягкий и твердый согласный» - Твердые и мягкие согласные звуки. Перед гласными. Двер. Твердо После твердого знака. Весы показывают правильный вес Вес ден идет дожд. Обозначение мягкости согласного с помощью мягкого знака. Думаю, известно всем, Дней в неделе ровно. Вставьте пропущенные буквы. Семь. Согласный звучит. Соберите слова.

    «Оксид азота» - 2NO2 === N2O4. Азот способен проявлять несколько степеней окисления от -3 до +5. Приведите примеры реакций, доказывающих кислотные свойства оксида азота(III). Как и оксид азота(III) практического значения не имеет. Бесцветный газ, не имеет запаха. Солеобразующие: N2O3 NO2 N2O4 N2O5 димер оксида азота(IV).

    «Разложение оксидов» - Амфотерные оксиды. Классиф. Классификация оксидов. Основные оксиды. Оглавление. Индеферентные оксиды (несолеобразующие). Пособие для учащихся. Глоссарий. Задания. Оксиды. Кислотные оксиды.

    «Свет и цвет» - Цветное стекло. h - постоянная Планка v - частота излучения. Частичное поглощение и отражение света. Применение светофильтров. Полное отражение света. Цвет прозрачных и непрозрачных тел. Защитная маска. Три основных «световых» цвета. Цвет отраженного света. Цветное. Три основных «пигментных» цвета. Аддитивное смешение цветов.

    «Кальций Сa» - Опишите физические свойства Ca. Температура плавления и кипения выше, чем у щелочных металлов. Кальций в виде фосфата Ca3 (PO4)2 входит в состав апатитов, фосфоритов. Задание для повторения. Жесткость воды обусловлена наличием в ней ионов Ca и Mg. Химические свойства Ca. Кальций Ca. Применение. Получение Ca.

    «Металл медь» - Сначала образуется оксид Cu2O, затем - оксид CuO. Плотность 8,92 г/см3, температура плавления 1083,4 °C, температура кипения 2567 °C. Особенно велика была роль бронзы. Химический элемент побочной подгруппы 1 группы – Cu (Медь). В морской воде содержится примерно 1·10-8 % меди. Попадание солей меди в организм приводит к различным заболеваниям человека.

    Несолеобразующие (безразличные, индифферентные) оксиды СО, SiO, N 2 0, NO.


    Солеобразующие оксиды:


    Основные. Оксиды, гидраты которых являются основания ми. Оксиды металлов со степенями окисления +1 и +2 (реже +3). Примеры: Na 2 O - оксид натрия, СаО - оксид кальция, CuO - оксид меди (II), СоО - оксид кобальта (II), Bi 2 O 3 - оксид висмута (III), Mn 2 O 3 - оксид марганца (III).


    Амфотерные. Оксиды, гидраты которых являются амфотерными гидроксидами. Оксиды металлов со степенями окисления +3 и +4 (реже +2). Примеры: Аl 2 O 3 - оксид алюминия, Cr 2 O 3 - оксид хрома (III), SnO 2 - оксид олова (IV), МnO 2 - оксид марганца (IV), ZnO - оксид цинка, ВеО - оксид бериллия.


    Кислотные. Оксиды, гидраты которых являются кислородсодержащими кислотами. Оксиды неметаллов. Примеры: Р 2 О 3 - оксид фосфора (III), СO 2 - оксид углерода (IV), N 2 O 5 - оксид азота (V), SO 3 - оксид серы (VI), Cl 2 O 7 - оксид хлора (VII). Оксиды металлов со степенями окисления +5, +6 и +7. Примеры: Sb 2 O 5 - оксид сурьмы (V). СrОз - оксид хрома (VI), МnОз - оксид марганца (VI), Мn 2 O 7 - оксид марганца (VII).

    Изменение характера оксидов при увеличении степени окисления металла

    Физические свойства

    Оксиды бывают твердые, жидкие и газообразные, различного цвета. Например: оксид меди (II) CuO черного цвета, оксид кальция СаО белого цвета - твердые вещества. Оксид серы (VI) SO 3 - бесцветная летучая жидкость, а оксид углерода (IV) СО 2 - бесцветный газ при обычных условиях.

    Агрегатное состояние


    CaO, СuО, Li 2 O и др. основные оксиды; ZnO, Аl 2 O 3 , Сr 2 O 3 и др. амфотерные оксиды; SiO 2 , Р 2 O 5 , СrO 3 и др. кислотные оксиды.



    SO 3 , Cl 2 O 7 , Мn 2 O 7 и др..


    Газообразные:


    CO 2 , SO 2 , N 2 O, NO, NO 2 и др..

    Растворимость в воде

    Растворимые:


    а) основные оксиды щелочных и щелочноземельных металлов;


    б) практически все кислотные оксиды (исключение: SiO 2).


    Нерастворимые:


    а) все остальные основные оксиды;


    б) все амфотерные оксиды


    Химические свойства

    1. Кислотно-основные свойства


    Общими свойствами основных, кислотных и амфотерных оксидов являются кислотно-основные взаимодействия, которые иллюстрируются следующей схемой:





    (только для оксидов щелочных и щелочно-земельных металлов) (кроме SiO 2).



    Амфотерные оксиды, обладая свойствами и основных и кислотных оксидов, взаимодействуют с сильными кислотами и щелочами:



    2. Окислительно - восстановительные свойства


    Если элемент имеет переменную степень окисления (с. о.), то его оксиды с низкими с. о. могут проявлять восстановительные свойства, а оксиды с высокими с. о. - окислительные.


    Примеры реакций, в которых оксиды выступают в роли восстановителей:


    Окисление оксидов с низкими с. о. до оксидов с высокими с. о. элементов.


    2C +2 O + O 2 = 2C +4 O 2


    2S +4 O 2 + O 2 = 2S +6 O 3


    2N +2 O + O 2 = 2N +4 O 2


    Оксид углерода (II) восстанавливает металлы из их оксидов и водород из воды.


    C +2 O + FeO = Fe + 2C +4 O 2


    C +2 O + H 2 O = H 2 + 2C +4 O 2


    Примеры реакций, в которых оксиды выступают в роли окислителей:


    Восстановление оксидов с высокими с о. элементов до оксидов с низкими с. о. или до простых веществ.


    C +4 O 2 + C = 2C +2 O


    2S +6 O 3 + H 2 S = 4S +4 O 2 + H 2 O


    C +4 O 2 + Mg = C 0 + 2MgO


    Cr +3 2 O 3 + 2Al = 2Cr 0 + 2Al 2 O 3


    Cu +2 O + H 2 = Cu 0 + H 2 O


    Использование оксидов малоактивных металлов дпя окисления органических веществ.




    Некоторые оксиды, в которых элемент имеет промежуточную с. о., способны к диспропорционированию;


    например:


    2NO 2 + 2NaOH = NaNO 2 + NaNO 3 + H 2 O

    Способы получения

    1. Взаимодействие простых веществ - металлов и неметаллов - с кислородом:


    4Li + O 2 = 2Li 2 O;


    2Cu + O 2 = 2CuO;



    4P + 5O 2 = 2P 2 O 5


    2. Дегидратация нерастворимых оснований, амфотерных гидроксидов и некоторых кислот:


    Cu(OH) 2 = CuO + H 2 O


    2Al(OH) 3 = Al 2 O 3 + 3H 2 O


    H 2 SO 3 = SO 2 + H 2 O


    H 2 SiO 3 = SiO 2 + H 2 O


    3. Разложение некоторых солей:


    2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2


    CaCO 3 = CaO + CO 2


    (CuOH) 2 CO 3 = 2CuO + CO 2 + H 2 O


    4. Окисление сложных веществ кислородом:


    CH 4 + 2O 2 = CO 2 + H 2 O


    4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2


    4NH 3 + 5O 2 = 4NO + 6H 2 O


    5.Восстановление кислот-окислителей металлами и неметаллами:


    Cu + H 2 SO 4 (конц) = CuSO 4 + SO 2 + 2H 2 O


    10HNO 3 (конц) + 4Ca = 4Ca(NO 3) 2 + N 2 O + 5H 2 O


    2HNO 3 (разб) + S = H 2 SO 4 + 2NO


    6. Взаимопревращения оксидов в ходе окислительно-восстановительных реакций (см. окислительно-восстановительные свойства оксидов).

    КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «woodmaster-shop.ru» — Водонагреватели. Отопление. Счетчики воды. Бойлеры. Ванны. Унитаз. Раковины